

Lecture Notes in Computer Science 4638
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Thomas Stützle Mauro Birattari
Holger H. Hoos (Eds.)

Engineering Stochastic
Local Search Algorithms

Designing, Implementing and Analyzing
Effective Heuristics

International Workshop, SLS 2007
Brussels, Belgium, September 6-8, 2007
Proceedings

13

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Volume Editors

Thomas Stützle
Mauro Birattari
Université Libre de Bruxelles (ULB)
CoDE, IRIDIA
Av. F. Roosevelt 50, CP 194/6, 1050 Bruxelles, Belgium
E-mail: {stuetzle,mbiro}@ulb.ac.be

Holger H. Hoos
University of British Columbia
Computer Science Department
2366 Main Mall, Vancouver, BC, V6T 1Z4, Canada
E-mail: hoos@cs.ubc.ca

Library of Congress Control Number: 2007933306

CR Subject Classification (1998): E.2, E.5, D.2, F.2, H.2, I.1.2, I.2.8, I.7

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-74445-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74445-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12111459 06/3180 5 4 3 2 1 0

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Preface

Stochastic local search (SLS) algorithms enjoy great popularity as powerful and
versatile tools for tackling computationally hard decision and optimization prob-
lems from many areas of computer science, operations research, and engineering.
To a large degree, this popularity is based on the conceptual simplicity of many
SLS methods and on their excellent performance on a wide gamut of problems,
ranging from rather abstract problems of high academic interest to the very spe-
cific problems encountered in many real-world applications. SLS methods range
from quite simple construction procedures and iterative improvement algorithms
to more complex general-purpose schemes, also widely known as metaheuristics,
such as ant colony optimization, evolutionary computation, iterated local search,
memetic algorithms, simulated annealing, tabu search and variable neighborhood
search.

Historically, the development of effective SLS algorithms has been guided to
a large extent by experience and intuition, and overall resembled more an art
than a science. However, in recent years it has become evident that at the core
of this development task there is a highly complex engineering process, which
combines various aspects of algorithm design with empirical analysis techniques
and problem-specific background, and which relies heavily on knowledge from a
number of disciplines and areas, including computer science, operations research,
artificial intelligence, and statistics. This development process needs to be as-
sisted by a sound methodology that addresses the issues arising in the various
phases of algorithm design, implementation, tuning, and experimental evalua-
tion. A similarly principled approach is key to understanding better which SLS
techniques are best suited for particular problem types and to gaining further in-
sights into the relationship between algorithm components, parameter settings,
problem characteristics, and performance.

The aim of SLS 2007, Engineering Stochastic Local Search Algorithms —
Designing, Implementing and Analyzing Effective Heuristics was to stress the
importance of an integration of relevant aspects of SLS research into a more
coherent engineering methodology and to provide a forum for research in this
direction. The workshop brought together researchers working on various aspects
of SLS algorithms, ranging from fundamental SLS methods and techniques to
more applied work on specific problems or real-life applications. We hope that
this event will lead to an increased awareness of the importance of the engineering
aspects in the design and implementation of SLS algorithms, and that it will
help to tie together existing activities and to seed new efforts in this promising
research area.

The importance and the timeliness of the topic of SLS engineering is wit-
nessed by the more than 50 submissions we received for this workshop. From
these submissions, the 12 full and 9 short papers contained in this volume and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

VI Preface

presented at the workshop were chosen based on a highly selective and rigorous
peer-reviewing process; each of them reports results of very promising, ongoing
research efforts from, or highly related to, the budding area of SLS engineer-
ing. The workshop program was complemented by the Doctoral Symposium on
Engineering Stochastic Local Search Algorithms, which was organized by Enda
Ridge and Edward Curry, and five tutorials on important topics in SLS engi-
neering given by well-known researchers in the field.

We gratefully acknowledge the contributions of everyone at IRIDIA who
helped in organizing SLS 2007. Special thanks go to Enda Ridge and Edward
Curry for their enthusiasm in organizing the doctoral symposium. We thank
all researchers who submitted their work and thus provided the basis for the
workshop program; the members of the Program Committee and the additional
referees for their help with the paper selection process; the Université Libre de
Bruxelles for providing the rooms and logistic support; and, more generally, all
those who contributed to the organization of the workshop. Finally, we would
like to thank COMP2SYS,1 the Belgian National Fund for Scientific Research,
and the French Community of Belgium for supporting the workshop.

June 2007 Thomas Stützle
Mauro Birattari
Holger H. Hoos

1 A Marie Curie Early Stage Training Site funded by the European Commission; more
information is available at http://iridia.ulb.ac.be/comp2sys.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Organization

SLS 2007 was organized by IRIDIA, CoDE, Université Libre de Bruxelles,
Belgium.

Workshop Chairs

Thomas Stützle Université Libre de Bruxelles, Belgium
Mauro Birattari Université Libre de Bruxelles, Belgium
Holger H. Hoos University of British Columbia, Canada

Program Committee

Thomas Bartz-Beielstein Cologne University of Applied Sciences, Germany
Roberto Battiti Università di Trento, Italy
Christian Blum Universitat Politècnica de Catalunya, Spain
Marco Chiarandini University of Southern Denmark, Denmark
Carlos Cotta University of Málaga, Spain
Camil Demetrescu Università La Sapienza, Italy
Luca Di Gaspero Università degli Studi di Udine, Italy
Karl F. Doerner Universität Wien, Austria
Marco Dorigo Université Libre de Bruxelles, Belgium
Carlos M. Fonseca University of Algarve, Portugal
Michel Gendreau Université de Montréal, Canada
Jens Gottlieb SAP AG, Germany
Walter J. Gutjahr Universität Wien, Austria
Pierre Hansen GERAD and HEC Montreal, Canada
Jin-Kao Hao University of Angers, France
Richard F. Hartl Universität Wien, Austria
Geir Hasle SINTEF Applied Mathematics, Norway
David Johnson AT&T Labs Research, USA
Joshua Knowles University of Manchester, UK
Arne Løkketangen Molde University College, Norway
Vittorio Maniezzo Università di Bologna, Italy
Catherine C. McGeoch Amherst College, USA
Daniel Merkle Universität Leipzig, Germany
Peter Merz Universität Kaiserslautern, Germany
Martin Middendorf Universität Leipzig, Germany
Pablo Moscato University of Newcastle, Australia
Luis Paquete University of Algarve, Portugal
Steven Prestwich University College Cork, Ireland

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

VIII Organization

Günther Raidl Vienna University of Technology, Austria
Celso Ribeiro Pontif́ıcia Univ. Católica do Rio de Janeiro, Brazil
Andrea Roli Università degli Studi G. D’Annunzio, Italy
Jonathan Rowe University of Birmingham, UK
Ruben Ruiz Valencia University of Technology, Spain
Michael Sampels Université Libre de Bruxelles, Belgium
Andrea Schaerf Università degli Studi di Udine, Italy
El-Ghazali Talbi University of Lille, France
Pascal Van Hentenryck Brown University, USA
Stefan Voss University of Hamburg, Germany
Jean-Paul Watson Sandia National Labs, USA
Ingo Wegener Universität Dortmund, Germany
David Woodruff University of California, Davis, USA
Mutsunori Yagiura Nagoya University, Japan

Local Arrangements

Prasanna Balaprakash Université Libre de Bruxelles, Belgium
Carlotta Piscopo Université Libre de Bruxelles, Belgium

Additional Referees

Prasanna Balaprakash
Frank Hutter
Marco A. Montes de Oca

Sponsoring Institutions

COMP2SYS, Marie Curie Early Stage Training Site
http://iridia.ulb.ac.be/comp2sys

National Fund for Scientific Research, Belgium
http://www.fnrs.be

French Community of Belgium (through the research project ANTS)
http://www.cfwb.be

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Table of Contents

The Importance of Being Careful . 1
Arne Løkketangen

Designing and Tuning SLS Through Animation and Graphics: An
Extended Walk-Through . 16

Steven Halim and Roland H.C. Yap

Implementation Effort and Performance . 31
Paola Pellegrini and Mauro Birattari

Tuning the Performance of the MMAS Heuristic . 46
Enda Ridge and Daniel Kudenko

Comparing Variants of MMAS ACO Algorithms on Pseudo-Boolean
Functions . 61

Frank Neumann, Dirk Sudholt, and Carsten Witt

EasyAnalyzer: An Object-Oriented Framework for the Experimental
Analysis of Stochastic Local Search Algorithms . 76

Luca Di Gaspero, Andrea Roli, and Andrea Schaerf

Mixed Models for the Analysis of Local Search Components 91
Jørgen Bang-Jensen, Marco Chiarandini, Yuri Goegebeur, and
Bent Jørgensen

An Algorithm Portfolio for the Sub-graph Isomorphism Problem 106
Roberto Battiti and Franco Mascia

A Path Relinking Approach for the Multi-Resource Generalized
Quadratic Assignment Problem . 121

Mutsunori Yagiura, Akira Komiya, Kenya Kojima, Koji Nonobe,
Hiroshi Nagamochi, Toshihide Ibaraki, and Fred Glover

A Practical Solution Using Simulated Annealing for General Routing
Problems with Nodes, Edges, and Arcs . 136

Hisafumi Kokubugata, Ayako Moriyama, and Hironao Kawashima

Probabilistic Beam Search for the Longest Common Subsequence
Problem . 150

Christian Blum and Maria J. Blesa

A Bidirectional Greedy Heuristic for the Subspace Selection Problem . . . 162
Dag Haugland

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

X Table of Contents

Short Papers

EasySyn++: A Tool for Automatic Synthesis of Stochastic Local
Search Algorithms . 177

Luca Di Gaspero and Andrea Schaerf

Human-Guided Enhancement of a Stochastic Local Search:
Visualization and Adjustment of 3D Pheromone . 182

Jaya Sreevalsan-Nair, Meike Verhoeven, David L. Woodruff,
Ingrid Hotz, and Bernd Hamann

Solving a Bi-objective Vehicle Routing Problem by Pareto-Ant Colony
Optimization . 187

Joseph M. Pasia, Karl F. Doerner, Richard F. Hartl, and
Marc Reimann

A Set Covering Approach for the Pickup and Delivery Problem with
General Constraints on Each Route . 192

Hideki Hashimoto, Youichi Ezaki, Mutsunori Yagiura, Koji Nonobe,
Toshihide Ibaraki, and Arne Løkketangen

A Study of Neighborhood Structures for the Multiple Depot Vehicle
Scheduling Problem . 197

Benôıt Laurent and Jin-Kao Hao

Local Search in Complex Scheduling Problems . 202
Thijs Urlings and Rubén Ruiz

A Multi-sphere Scheme for 2D and 3D Packing Problems 207
Takashi Imamichi and Hiroshi Nagamochi

Formulation Space Search for Circle Packing Problems 212
Nenad Mladenović, Frank Plastria, and Dragan Urošević

Simple Metaheuristics Using the Simplex Algorithm for Non-linear
Programming . 217

João Pedro Pedroso

Author Index . 223

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Importance of Being Careful

Arne Løkketangen

Molde University College, Molde, Norway
Arne.Lokketangen@himolde.no

Abstract. Metaheuristic (and other) methods are often implemented
using standardized parameter values. This is most often seen when com-
paring a favorite method with competing methods, but also when inex-
perienced researchers implement a method for the first time. Often the
(hidden) correlations between the search method components and para-
meters are neglected or ignored, using only standardized templates. This
paper looks at some of these pitfalls or hidden correlations, using the
mechanisms of tabu search (TS) as examples. The points discussed are
illustrated by examples from the authors experience.

1 Introduction

When designing and implementing heuristics for discrete optimization problems,
there are many choices to be made. These include search paradigms, search
mechanisms, search parameters, test sets, etc. Often these choices are treated
as independent of each other, even though most researchers acknowledge some
interdependence between the different search mechanisms and associated para-
meter settings. Our experience is that the search mechanisms and parameters
often interact, and at times in unforeseen ways. This is a difficult problem to
disentangle, and often even to discover.

This paper attempts to highlight some of the interactions experienced by
the author, while implementing the Tabu Search (TS) metaheuristic [3]. Others
will have similar experiences. The reader should at least learn that caution is
required when designing heuristics, and testing should be carried out to verify
the hypothesis underlying each mechanism and parameter choice.

One early example is the publicity in the early days of TS by people claiming
that the best value for Tabu Tenure (TT) was 7. This was mainly due to the
(somewhat erroneous) linkage to the article The Magical Number Seven, Plus or
Minus Two: Some Limits on Our Capacity for Processing Information by Miller
[1], creating the impression that TS was governed by some of the same rules as
human cognitive abilities. The claim of 7 being the best TT has long since been
abandoned, noticing that good TT values are also correlated to instance size and
neighborhood structure.

Many articles on how to design and test heuristics have been published, in-
dicating that these processes are far from being well-defined. Two much-cited
works are How not to do it by Gent and Walsh [2] and Testing Heuristics: We
have it all wrong by Hooker [4]. These articles contains much good advice, and

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2007, LNCS 4638, pp. 1–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2 A. Løkketangen

the interested reader should acquaint themselves with them. From the article by
Gent and Walsh, the following advice stands out: Make fast, repeatable code.
That is, make the code fast, so that more tests can be done in the same amount
of cpu-time, and make the code repeatable, as there is very often need to run
tests anew, due to some error, or referee comment, or other. One of Hooker’s
main points is that we should forget much of the competition aspect, as this leads
us to waste time on low-level engineering instead of inventing or discovering new
mechanisms. The engineering part is hardly research, but is often required by
referees who will only accept articles presenting new best results.

One example of unnecessary slow code too often seen is when the TT mech-
anisms are implemented as a (circular) list. This is cumbersome, has a time
complexity of |TT | and is thus very time consuming, especially as the TT can
be implemented in constant time with very little overhead.

The examples used for illustrations in the following sections are only explained
in sufficient detail for understanding the arguments. To get more detail and
background, the authors are referred to the original papers.

This paper is organized as follows. In Section 2 we look at values for the
Tabu Tenure, while the usefulness of Aspiration Criteria is illustrated in Section
3. The question on whether to search in infeasible space or not is addressed
in Section 4. Section 5 treats the Move Selection, Section 6 discusses Learning
and Forgetting, and Section 7 discusses some tradeoff issues when implementing
search methods. Finally the conclusions are summarized in Section 8.

2 The Tabu Tenure

The value for the Tabu Tenure is often given little consideration, and often it
seems like it is taken out of thin air, or by reference to another article. (Occa-
sionally one might even see the 7 +/- 2 argument). There is some controversy
as to wether some randomization in the value of TT should be used, or not,
with current consensus leaning towards some randomization. There are clear in-
dicators, however, that the actual value of TT required is linked to the other
mechanisms used, especially move evaluation, diversification and learning.

It is often stated that the purpose of the tabu status is in stopping the reversal
of recent moves. This is clearly only part of the picture. An important effect of
the tabu status is to block off most of the search space. As an example, in a
bit-flip neighborhood, and a TT of 20, then the search space is reduced by a
factor of 220. It is easy to construct tabu-criteria that are very powerful. As a
different example, consider an edge-exchange neighborhood, often employed in
graph problems. If e.g. the instance size is |N | (same as the number of nodes)
and the total number of edges is |N |2, then both of the following tabu criteria
might seem natural if both edges involved in a move becomes tabu:

1. A move is tabu if both edges of the move are tabu.
2. A move is tabu if either edge of the move is tabu.

The first criterion is very weak, while the second is very strong. These consid-
erations are very often not present when research is presented in articles, but has

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Importance of Being Careful 3

Fig. 1. Tabu Tenure

a large effect on the required values of the search parameters and the resulting
search trajectories.

2.1 Varying Length TT

This subsection gives an example of when a dynamic TT is better than a fixed
TT. The example is taken from Hvattum et al. [5]. The problem specification is
given below to give the necessary background. The Boolean Optimization Prob-
lem can be regarded as a Satisfiability Problem with a profit on the variables.
This profit is to be maximized.

max z =
∑

j∈N

cjxj (1)

s.t.
∑

j∈N

aijxj ≥ 1, i ∈ M (2)

xj ∈ {0, 1}, j ∈ N (3)

The TS metaheuristic developed in [5] to solve this problem uses a simple
1-bit flip neighborhood. In Figure 1 is shown the effect, using a single instance,
on the search for various values of the TT, and keeping it either fixed or varying.
For the varying TT, it was set to be a random number between 10 and the
number on the x-axis. With a fixed move evaluation function, the results are
as shown in the bottom pair of curves in the figure. As can be seen, having a
dynamic TT is clearly beneficial, as better results are obtained over a larger
range of values. The same conclusion is supported by the top two curves, giving
the corresponding results using an adaptive move evaluation function (see 2.2).
(Similar results were observed for the other test-cases).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

4 A. Løkketangen

2.2 Interaction of TT with Move Evaluation

In Figure 1 is also shown how the form of the move evaluation function influences
both the TT and the overall search results. The search in [5] was designed to be
able to search both in feasible and infeasible space. This is done by modifying the
move evaluation function FM with a component reflecting the resulting level of
infeasibility. FM = ΔV + w · Δz. The range of change in the objective function
value component ΔV is scaled to ±1, and the infeasibility component is the
number of violated constraints multiplied by an adaptive weight, w. The two
components are combined so as to give a balanced view to maintaining primal
feasibility and a good objective function value. The emphasis between the two
components is changed dynamically to keep the search around the feasibility
boundary.

The value of w, the adaptive component, is initially set to 1. It is adjusted
after each move as follows:

– If the current solution is feasible: w = w + Δwinc

– If the current solution is not feasible, and w > 1: w = w − Δwdec

As is illustrated in Figure 1, the effect of using an adaptive move evaluation
function, capable of guiding the search into, and out of, infeasible space, has a
large impact on the acceptable values for TT. The most important aspect of this
is that the TT can be shorter, and good results are produced over a larger range
of TT, making the search much more robust with respect to this parameter. (For
the actual values used for Δwinc and Δwdec, see Section 4).

2.3 Localized Tabu Tenure

This subsection deals with the case when the global constraints can be regarded
as weak. A typical case of this is described in Interactive Planning for Sustainable
Forest Harvesting by Hasle et al. [6]. The object here is to device a sustainable
plan for the treatment of each of a set of connected forest stands, or areas, in
a 200 year perspective. Each stand has its own type of wood, age profile, soil
quality, inclination, etc. giving rise to different growth rates and suitability for
different types of trees. In Figure 2 is shown a typical area of forest, with around
700 stands. A treatment can typically be cut or leave, but there are also numerous
other treatments like thinning and gathering seeds. There are global constraints
of the type requiring yearly harvesting to be approximately equal each year (or
follow a given profile). There are also neighboring constraints, like the 2-meter-
constraint that requires all neighboring stands to be at least 2 meters tall before
harvesting of a given stand. A move is the changing of a treatment for a given
stand, and the tabu criterion is not to make a move in a recently treated stand.

Preliminary testing of a TS heuristic for this problem showed that the best
TT was nearly equal to the number of stands in the instance. This implies that
most stands will have a tabu status at any given time, leaving very little room
for the local search.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Importance of Being Careful 5

Fig. 2. Example of forest area and its subdivision into stands

The reason for this behavior is the weak nature of the global constraints,
like balancing the harvesting over the years. Whenever the treatment plan for a
given stand has been changed, the search moves to distant (in the geographical
sense) stands. As there are many distant stands, all (or most) of them need to
be tabu for the neighbor constraints to take effect, resulting in the extremely
long required TT.

To remedy this, a device that might be called Localized Tabu Tenure can be
employed. In this case the TT of a given stand is only counted for moves in the
vicinity of the stand, where vicinity can be one or two stands distant. In this
way, the TT will have a more natural length, and the neighboring constraints
dealt with in the usual way.

3 Aspiration Criteria – Why Not Ignore It?

The inclusion of Aspiration Criteria (AC) in a TS is of crucial importance. The
reason for this is that the basic TS mechanism of keeping certain attributes of
the solution tabu for a certain time (i.e. iterations) often is too powerful, and
blocks off attractive solutions. The mechanism called AS is designed to overcome
this, by releasing the tabu status from moves leading to solutions having some
predefined feature. The most common AC is to allow moves that leads to a new,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

6 A. Løkketangen

Table 1. The effect of using an Aspiration Criterion

Test case set No ASP as % of w/ ASP No Asp - Time to best Asp - Time to best
Class 1 99.985 0.05 0.01
Class 2 100.000 0.01 0.00
Class 3 100.000 0.02 0.00
Class 4 100.000 0.02 0.00
Class 5 99.992 0.02 0.01
Class 6 100.000 0.02 0.00
Class 7 100.000 0.04 0.00
Class 8 99.985 0.03 0.03
Class 9 100.000 0.02 0.00
Class 10 100.000 0.03 0.00
Class 11 99.955 0.11 0.08
Class 12 99.980 0.06 0.01
Class 13 99.998 0.03 0.00

overall best, solution, even though the AC can take many forms. The effect of
the AC is also dependent on the severeness of the Tabu Criterion.

AC are at times ignored, or only the standard AC outlined above is included.
Very few reports the effect of their AC, and one might guess that in many cases
the effect of the AC is not even tested. This might imply that the use of more
sophisticated forms of AC including e.g. recency, segmentation, learning and
forgetting is a largely untested field.

The benefit of AC will be illustrated by work from Hvattum et al. [5]. (This
is the same as in Section 2.1).

In Table 1, is shown the effects of including an Aspiration Criterion. The AC
chosen is the standard one of allowing a tabu move if it leads to a new best
solution. Each row in the table contains the accumulated results for each of 15
classes of problems, ranging in size from 50 variables and 100 constraints to
1000 variables and 10.000 constraints. The three columns give the quality of the
search when not using AC as a percentage of the results when including the
AC, together with he time taken to reach the best solution with and without
AC. As can be seen, the overall results are slightly better when using AC, and
never worse. What is equally important is that time taken for the search to reach
the best solution is much shorter when using the AC. This effect increases with
problem size. Even if the quality is matched, the search takes longer.

4 Searching in Infeasible Space

One important design decision is whether the search should stay in feasible
space all the time, or be allowed to traverse infeasible space on its hunt for
good solutions. This decision of course depends on how easily feasibility can
be recovered when going into infeasible space. For some problem types this is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Importance of Being Careful 7

Fig. 3. Searching with dynamic w

trivial (e.g. 0/1 MCKP) , while for others it might be a major hurdle (e.g. ship
scheduling).

One point to notice is that the optimal solution is always on the infeasibility
boundary, so trying to let the search trajectory stay close to this might be a
good thing. The feasible region might also be disconnected, as in Cappanera
and Trubian [8].

The work by Hvattum et al. [5] is again used for illustrative purposes, this
time for comparing feasible search with the same search being allowed to also
search in infeasible space.

In Figure 3 is shown the TS as implemented in [5], on a small test-case for
iterations 80 − 180. All the solution values above the dotted line showing the
incumbent value are of course infeasible (as might some below the dotted line also
be). The important thing to notice, is that whenever the incumbent is improved,
the search comes from infeasible space.

This should be contrasted with the search depicted in Figure 4. This is using
the same instance and TS settings as in Figure 3, but using a w value of 1. This
restricts the search to stay mainly in feasible space. As is evident, the search is
much more aggressive, and gets better results, when being allowed to wander
into infeasible space. The proportion of the search time spent in infeasible space
is determined by the values of the adaptive weight adjustment factors Δwinc

and Δwdec, described in Section 2.2.
In Figure 5 are shown possible values for these two factors. As can be seen, it

is the ratio of values that is important, not the absolute values. For the searches
in [5] we chose Δwinc = 0.90 and Δwdec = 0.35. This behavior is also observed
in other work.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

8 A. Løkketangen

Fig. 4. Searching with static w

Fig. 5. Relationship between Δwinc and Δwdec

4.1 When Feasibility Is Difficult to Obtain

For some problems, even finding feasible solutions can be a hard task. One
example of this is presented in A Local Search Based Heuristic for the Demand
Constrained Multidimensional Knapsack Problem by Cappanera and Trubian [8].
This problem is based on a 0/1 MCKP, but with additional cover constraints. It
can also be called the 0/1 Multidimensional Knapsack/Covering Problem (KCP)
and formulated as follows:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Importance of Being Careful 9

Fig. 6. Infeasibility levels and w

max z =
∑

j∈N

cjxj (4)

s.t.
∑

j∈N

aijxj ≤ bi, i ∈ MA (5)

∑

j∈N

aijxj ≥ bi, i ∈ MB (6)

xj ∈ {0, 1}, j ∈ N (7)

Here MA and MB represents the number of knapsack and cover constraints,
respectively. The authors show that the set of feasible solutions might be dis-
connected with a bit-flip neighborhood. They employ a 2-phase method. In the
first phase, all effort is in obtaining feasibility, ignoring the objective function
value, while in the second phase, the search stays feasible all the time, using TS
first with a single bit-flip neighborhood, and then a double bit-flip. They obtain
good results, beating CPLEX on the larger problems, and finding more feasible
solutions. The most difficult problems to find feasible solutions for, where those
with the largest number of constraints.

The same problem was the topic for Adaptive Memory Search for Multidemand
Multidimensional Knapsack Problems by Hvatum et al. [7]. Here the solution
approach is very similar to the one used in [5], in that movement in infeasible
space is allowed, but penalized. Computational experiments show that the new

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

10 A. Løkketangen

approach is in general able to find better solutions faster, and that feasible
solutions now are found for all the problems in the test set.

This simple shift in design philosophy, going from separate phases in the first
case (first feasibility, then objective function value), to an integrated approach
in the second, illustrates the potential benefits of allowing infeasible moves when
solving many problem types. This applies to both the case where feasibility is
difficult to attain [7], and where obtaining feasibility is not an issue [5].

5 What Is the Best Move?

The normal move evaluation function is often very myopic, judging the quality
of possible moves relative to the current solution. At the same time, the move
selection function is usually designed to identify good moves in the neighborhood.
This implies that the globally best move might not be at the top of the list, but
will be among the top contenders. One way to exploit this, is by Probabilistic
Move Acceptance, PMA, as described in Løkketangen and Glover [9].

This approach can be used by accepting randomly from the top of the list, but
in a way biased towards the moves having the highest evaluations. The selection
method is as follows: PMA:

1. Select a move acceptance probability, p.
2. Each iteration sort the admissible moves according to the move evaluation

function.
3. Reject moves from the top of the list with probability (1 − p) until a move

is accepted.
4. Execute the selected move in the normal way.
5. If not finished, go to 2 and start the next iteration.

This can also be viewed as using randomness to diversify the search (as a
substitute for deterministic use of memory structures), but in a guided way.

A different approach is taken in Candidate List and Exploration Strategies
for Solving 0/1 MIP Problems using a Pivot Neighborhood by Løkketangen and
Glover [10]. Here the idea is that since the neighborhood is expensive to explore
(the neighborhood here is a LP-simplex pivoting neighborhood), several of the
moves (pivots) may be good, and not just the one with the highest score. The
problem here is that after a pivot is executed, the tableau is changed, and the
other possible initial pivots might not be feasible any longer. In this case it turns
out that, for our test-cases, up to 3 moves (or pivots) might beneficially be taken
for the same initial tableau, as long as care is taken not to execute any move
that has become illegal. The overall effect can thus be a substantial saving in
time.

6 Learning and Forgetting

One of the guiding principles of Tabu Search is that the search should learn
as it goes along. This is most often accomplished by using short-term memory

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Importance of Being Careful 11

Fig. 7. Effect on Tabu Tenure of learning

for the tabu list, and frequency-based long-term memory for diversification (and
intensification). Central to this is also the concept of forgetting. What is learnt
is learnt in a certain context (i.e. area of the search space), and might not have
much relevance later in the search. The short-term tabu list forgets quickly, but
the long-term memory usually never forgets.

Løkketangen and Glover [11], [12] have implemented a TS for Satisfiability
Problems, containing both constructive and iterative solvers, and various learning
and forgetting aspects. The interested readers are referred to the papers for
details.

This work contains a couple of points of interest for this paper. The first is the
effect on the tabu tenure on forgetting. Learning was implemented by using extra
clause weights indicating the importance of the individual clauses (constraints).
These weights were updated every iteration by incrementing the weights for the
violated clauses. Forgetting was implemented on top of this by multiplying the
weights with a small discounting factor, slightly less than 1, thus diminishing the
effect of the older learning. One very intersting side-effect of this is illustrated in
Figure 7. The figure shows the required number of iterations to find a solution to
a test problem for different values of tabu tenure. As is evident, the best results
are when the TT is 2 or 3. One interpretation of this is that the TT is only
required for blocking off the immediate move reversal, while the learning and
forgetting seems enough to guide the search (of course in addition to the basic
move evaluation function).

The second point of interest is illustrated in Figure 8. This figure illustrates
the effect of learning between constructive runs, in that variables appearing in
unsatisfied clauses (violated constraints) are given extra emphasis in the next
constructive runs. An extra mechanisms that turned out to be important for the
learning to work is the concept of normalization. This is, in essence, a mechanism
that gives more importance to variables in shorter clauses, and the clauses shrink
as varibles are assigned truth-values during the construction. Six different forms
of normalization was tried and is shown in the figure on a simple test case.
The severity of the importance is indicated by the numbers, with F1 being no
normalization, and F6 being most severe.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

12 A. Løkketangen

Fig. 8. Interaction between normalizations and Learning

As can be seen from the figure, the learning does not work without any nor-
malization, and works better with the most severe type. This type of correlation
is difficult to think of and to identify when testing heuristics, but should be kept
in mind. Maybe what the search needs is an extra little twist that changes focus
somewhat, as in this example.

7 Other Tradeoff Issues

It is evident that adding extra mechanisms increases the time needed per basic
iteration of a search. Typical examples are long term diversification mechanisms
added to a TS, or many of the examples mentioned in this paper. The trade-off
is basically to either

– Do a lot every iteration, for a few iterations.
– Do a little every iteration, for many iterations.

A typical example of the first is TS, while Simulated Annealing (SA) is typical
for the second. The design aim for the more complex searches must be that the
added memory structures and mechanisms lets the search focus more rapidly
on good solutions, offsetting the longer time per iteration with needing fewer
iterations. (The same applies of course also to population-based methods, where
global search space information is represented by a set of solutions.

This also touches on the topic of search time versus solution quality. It is
clear that some real-world applications needs answers within milliseconds, while
other applications may run for a long time, possibly overnight, or longer, before
an answer is needed. Some searches need a larger set of iterations to trigger

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Importance of Being Careful 13

Fig. 9. Tradeoff between instance size and total iterations done

long term mechanisms, while others give good answers quickly, but with a lower
potential of improvement.

Artificially generated instances from the academic world suffers from a lack of
maximum time allowable, so only the best results are of interest, while second-
best results seem to be admissible only if they are obtained much faster. Here
it is about time to cite Hooker [4] again, and remind ourselves that we should
not spend too much effort on the low-level engineering details, but rather focus
on finding out when and where to apply our (new) mechanisms. (It is difficult
to compete with the man-years of engineering effort put into CPLEX).

Computational testing is often done on a set of test-cases, some being small,
some being big (these sizes increase rapidly over time as both hardware and
methods get better and faster). The problem here is how much time should be
allotted to the big instances compared to the small.

Ideally we want a method where search time per iteration increases linearly
with size. Big instances require disproportionally more time, as both the time
per iteration increases, and the number of iterations needed increases also. Often
the small instances can be run as often as we like, taking virtually no time, while
the bigger instances can only be run a few times.

Different authors treat his problem differently. Some allot the same amount of
time or iterations to all sizes, while others use some (more or less artificial) ar-
gument to allot proportionally more time to the large instances. As an example,
in Figure 9 is plotted the number of iterations in the 5 seconds alotted the TS
heuristic of Hvattum et al. [5]. These 5 seconds where allotted all the searches.
(They also had a series of tests giving 60 seconds to each search, but that only
supports the argument.) The graph also shows on which instances Xpress-MP
found the optimum within 4 hours. The horizontal axis gives the number of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

14 A. Løkketangen

non-zero’s in the problem instance (this measure takes into account both the
number of variables and constraints), while the vertical axis then gives the cor-
responding number of iterations. As can be seen, the smallest problems managed
to do around 300.000 iterations per second, while the largest only gets 1/1000
of this. This is in a sense turning things upside down, as we should rather give
the large instance 1000 times more search effort. It is also evident from the com-
putational results that better solutions might be expected with increased search
time. (As things were at the time, the results beat CPLEX, Xpress and the rest
of the competitors, so the results were sufficient).

8 Conclusions

This paper illustrates the importance of being careful and thorough when de-
signing search heuristics. In particular the reader should focus on possible inter-
actions between the different search mechanisms, and their associated parameter
values. The examples used are from TS settings, but designers of other major
metaheuristics must have similar experiences.

Also of importance are the somewhat novel techniques used for illustrative
purposes, in the sense that if a mechanism does give better results, then it
should be used, even though normal conventions are violated (as is the case in
[10]).

References

1. Miller, G.A.: The Magical Number Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information. The Psychological Review 63, 81–97 (1956)

2. Gent, I.P., Grant, S.A., MacIntyre, E., Prosser, P., Smith, B.M., Walsh, T.: How
Not To Do It. Research Report 97.27, School of Computer Studies, University of
Leeds (1997)

3. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht
(1997)

4. Hooker, J.N.: Testing Heuristics: We have it all wrong. Journal of Heuristics 1(1),
33–42 (1995)

5. Hvattum, L.M., Løkketangen, A., Glover, F.: Adaptative Memory Search for
Boolean Optimization Problems. Discrete Applied Mathematics 142, 99–109 (2004)

6. Hasle, G., Haavardtun, L.J., Kloster, O., Løkketangen, A.: Interactive Planning for
Sustainable Forest Harvesting. Annals of Operations Research 95, 19–40 (2000)

7. Arntzen, H., Hvattum, L.M., Løkketangen, A.: Adaptive Memory Search for Mul-
tidemand Multidimensional Knapsack Problems. Computers & Operations Re-
search 33, 2508–2525 (2006)

8. Cappanera, P., Trubian, M.: A Local Search Based Heuristic for the Demand
Constrained Multidimensional Knapsack Problem. INFORMS Journal on Com-
puting 17(1), 82–98 (2005)

9. Løkketangen, A., Glover, F.: Solving zero-one mixed integer programming problems
using tabu search. European Journal of Operational Research 106, 624–658 (1998)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Importance of Being Careful 15

10. Løkketangen, A., Glover, F.: Candidate List and Exploration Strategies for Solving
0/1 MIP Problems using a Pivot Neighborhood. In: Voss, S., Martello, S., Osman,
I.H., Roucairol, C. (eds.) Metaheuristics: Advances and Trends in Local Search
Paradigms for Optimization, pp. 141–155. Kluwer Academic Publishers, Dordrecht
(1999)

11. Løkketangen, A., Glover, F.: Surrogate Constraint Analysis - New Heuristics and
Learning Schemes for Satisfiability Problems. In: Satisfiability Problem: Theory
and Applications. DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science, vol. 35 (1997)

12. Løkketangen, A., Glover, F.: Adaptive Memory Search Guidance for Satisfiability
Problems. In: Rego, C., Alidae, B. (eds.) Metaheuristic Optimization Via Adaptive
Memory and Evolution: Tabu Search and Scatter Search, pp. 213–227. Kluwer
Academic Publishers, Dordrecht (2005)

13. Løkketangen, A., Glover, F.: Probabilistic Move Selection in Tabu Search for
0/1 Mixed Integer Programming Problems. In: Osman, I.H., Kelly, J.P. (eds.)
Metaheuristics: Theory and Applications, Kluwer Academic Publishers, Dordrecht
(1996)

14. Løkketangen, A., Glover, F.: Tabu Search for Zero/One Mixed Integer Program-
ming with Advanced Level Strategies and Learning. International Journal of Op-
erations and Quantitative Management 1(2), 89–109 (1995)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Designing and Tuning SLS Through Animation
and Graphics: An Extended Walk-Through

Steven Halim and Roland H.C. Yap

School of Computing, National University of Singapore, Singapore
{stevenha,ryap}@comp.nus.edu.sg

Abstract. Stochastic Local Search (SLS) is quite effective for a variety
of Combinatorial (Optimization) Problems. However, the performance
of SLS depends on several factors and getting it right is not trivial. In
practice, SLS may have to be carefully designed and tuned to give good
results. Often this is done in an ad-hoc fashion. One approach to this
issue is to use a tuning algorithm for finding good parameter settings to
a black-box SLS algorithm. Another approach is white-box which takes
advantage of the human in the process. In this paper, we show how
visualization using a generic visual tool can be effective for a white-box
approach to get the right SLS behavior on the fitness landscape of the
problem instances at hand. We illustrate this by means of an extended
walk-through on the Quadratic Assignment Problem. At the same time,
we present the human-centric tool which has been developed.

1 Introduction

Stochastic Local Search (SLS) algorithms have been used to attack various NP-
hard Combinatorial (Optimization) Problems (COP), often with satisfactory
results. However, practitioners usually encounter difficulties when they try to
get good performance from an SLS implementation.

Often the COPs encountered in industry are new COPs or variants of the
classical COPs where no or little research is available. Sometimes a COP C′ re-
sembles a classical COP C for which a good SLS algorithm S is known. However,
a direct implementation of S for C′ usually will not immediately yield good per-
formance. As there is no universal SLS algorithm which has good performance
on all COPs, it is necessary to adapt existing SLS algorithm or create a new
one for the COP at hand. It is often said that it is easy to create a working SLS
for a COP, but hard to tune the SLS to achieve good performance on various
instances of the COP [1,2,3,4,5]. [4] has summarized this situation as — 10% of
the development time is spent in designing, implementing, and testing the SLS
while the remaining 90% is used for (fine) tuning the SLS.

In several papers, SLS tuning is focused on tuning the parameter values. This,
however, does not tell the whole story. From the beginning, one would already
have a large number of combinations of SLS components (e.g. the neighborhood,
etc) and search strategies (e.g. intensification, diversification, etc) to configure
the SLS algorithm. Here we consider the SLS design and tuning problem as a

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2007, LNCS 4638, pp. 16–30, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Designing and Tuning SLS Through Animation and Graphics 17

holistic problem of finding a suitable configuration including parameter values,
choice of components, and search strategies for an SLS algorithm in order to give
good results for the class of COP instances at hand within limited development
time and limited running time. This definition takes into account the practical
efforts and resource requirements of industrial problems.

In [5], we classified the existing works on SLS design and tuning problem into
two major approaches. Both approaches require the interaction of the human
(the SLS algorithm designer) with the computer but in different ways:

1. The black-box approach favors the utilization of the computer for fine-tuning.
The black-box approach aims to develop special ‘tuning algorithms’ to ex-
plore the SLS configuration space initially given by the algorithm designer.
The best found configuration in the given configuration space is then re-
turned. Examples of black-box approaches include F-Race [2], CALIBRA
[4], +CARPS [6], Search Parameter Optimization [7], etc.

2. The white-box approach favors the utilization of human intelligence and/or
visual perception strength. It aims to create tools or methods to help analyz-
ing the performance of the SLS algorithm so that the algorithm designer has
a basis for tweaking the SLS implementation. In this fashion, the SLS may
be redesigned to extend beyond the initial configuration space. Examples
of white-box approaches include Statistical Analysis (Fitness Distance Cor-
relation Analysis, Run Time Distribution, etc) [3,8], Sequential Parameter
Optimization [9], Human Guided Tabu Search [10], Visualization of Search
Process [11,12], V-MDF and Viz [5,13,14,15], etc.

In this paper, we present a white-box approach where the algorithm designer
first ‘opens the white-box’ using intuitive visualization tools. The objective is to
investigate the fitness landscape [3,8,16] of the COP instance at hand and the
SLS trajectory on the fitness landscape. This allows the algorithm designer to
understand the kinds of problems which might be affecting the SLS, e.g. geting
stuck in a deep local optimum of a rugged fitness landscape, failure to navigate
to good regions, etc. The algorithm designer can use that knowledge to roughly
tune the SLS either by using known or new heuristic tweaks. This process may
involve not only changing parameter values but also the SLS algorithm design.

We show how visualization can be effective for designing and tuning an SLS
algorithm in a white-box fashion. We have chosen as a starting baseline, a Ro-
bust Tabu Search (Ro-TS) algorithm which has been shown to give good per-
formance for the Quadratic Assignment Problem (QAP) [17]. We show how by
using generic visualization tools as an integral part of the development process,
one can get insights into the fitness landscapes and problem characteristics of the
instances of a COP. In turn, the insights inspire the development of an improved
SLS that is suitable to navigate the fitness landscape.

Note: Several aspects of the presentation in this paper are best viewed via the
animated video at this URL: http://www.comp.nus.edu.sg/~stevenha/viz.
Here we have tried to illustrate the main points of our approach under the
constraints imposed by a static, black and white paper (the online version of
this paper in the Springer website is in color and can be magnified).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

18 S. Halim and R.H.C. Yap

2 The Visualization Tool: Viz

We developed a visualization tool for the white-box approach called Viz. Viz
currently consists of: (a) the Viz Experiment Wizard (EW); and (b) the Viz
Single Instance Multiple Runs Analyzer (SIMRA).

The initial idea of using anchor points to explain SLS trajectory was first
proposed in [5,13]. The proposal of a generic abstract 2-D visualization of the
COP’s fitness landscape using anchor points and visualization of SLS trajectory
on it was proposed in the preliminary version of the Viz system [14]. The GUI
and animation aspects of the visualizations in Viz are detailed in [15]. We remark
that the Viz system is still undergoing development. As such, the visualizations
and the GUI in this paper are significantly improved over [14,15].

Basic Concepts. Given a COP instance π, the fitness landscape of π, FL(π), is
defined1 as FL(π) : (S(π), d(s1, s2), g(π)) [8], where S(π) is the set of solutions of
the COP instance (the search space), d(s1, s2) : S × S → � is a distance metric
which is natural for the COP in question (e.g. Hamming distance for QAP, see also
the discussion in [18]), and g(π) : S → � is the objective function.One canvisualize
the abstract 2-D fitness landscape as a surface where each solution is a point on the
surface, separated from other points according to its distance to those other points,
and with a height that reflects the fitness (objective value) of that solution.

The search trajectory of an SLS algorithm on this FL(π) is defined as a finite
sequence (s0, s1, . . . , sk) ∈ S(π) of search positions corresponding to solutions in
S(π) (a solution can be satisfiable or not satisfiable) such that ∀i ∈ {1, 2, . . . , k},
(si−1, si) is a local move done by the SLS algorithm according to its neighborhood
N(π) [3]. The SLS algorithm can be visualized as a heuristic algorithm that navi-
gates or walks through the fitness landscape of the COP instance in order to find
higher (lower for minimizing COP) peaks (valleys) of the fitness landscape.

A Generic Fitness Landscape and Search Trajectory Visualization.
[14,15] proposed that observing search trajectory on a fitness landscape is helpful
to understand what is happening in the search. We describe the generic Fitness
Landscape and Search Trajectory (FLST) visualization in Viz below:

First, we introduce the concept of Anchor Point (AP) set. The fitness land-
scape can contain an exponential number of solutions, thus we need an AP set
which represents selected reference points on the fitness landscape to form an
approximate fitness landscape visualization. The points along the SLS trajectory
are then replayed back according to their distance w.r.t APs in the AP set.

In overview, FLST visualization is currently prepared using the following steps:

1. Potential AP Collection Phase (see Fig. 1)
In order to use FLST visualization in Viz, an SLS algorithm is augmented to
save a history of the solutions visited into a log (i.e. RunLog file). In an SLS

1 The definition that we use here [8] depends on the distance metric d(s1, s2) and not
the neighborhood N(π) as in [3]. Thus, changing the N(π) of the SLS will not change
the fitness landscape but will change the SLS trajectory on that fitness landscape.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Designing and Tuning SLS Through Animation and Graphics 19

Fig. 1. Potential AP Collection Phase and AP Set Update Phase. Let ACEJK be 5
APs collected from Run 1. Now, we execute 3 more SLS runs. The letters in red, green,
blue indicate potential APs. After the AP Set Update Phase, ‘B/D’ replaces ‘J/K’.

trajectory, the solution just before a non-improving move occurs is likely to be a
local optimum solution. We use this feature to collect locally optimal solutions
from the RunLog files from various SLS runs. These local optima solutions form
a potential AP set.

2. AP Set Update Phase (see Fig. 1)
For visualization, it is not feasible to display too many points on screen. Thus,
the AP set size should be limited to a small fraction of the possible solution set.
It is important to only select meaningful APs that have these criteria:

1. Diverse: if AP X is included, then a similar AP X ′ will not.
2. High quality: good local optima must be included if found.
3. Important (best found, often visited) solutions from each run are included.

To achieve the above-mentioned criteria, we update the AP set according to the
strategy below. The quality of the APs in the AP set is improved over time while
the diversity of the APs is roughly maintained as we do more SLS runs:

1. Load past AP set from an AP log file if it exists.
2. If the AP set is still not full, randomly add any potential AP into it until it

is full. The random addition of potential AP encourages diversity.
3. If the AP set is already full, compare each potential AP P with all current

APs in AP set. Pick the nearest AP Q in term of distance metric w.r.t P .
Then, if P is better than Q, P will replace Q. Otherwise, ignore P .

4. Save the current AP set into an AP log file for future experiments.

3. AP Layout Phase (see Fig. 2)
Now that we have a set of n-dimensional APs, how to visualize it? Our strategy
is to use an abstract 2-D fitness landscape visualization which is guided by the
distance metric between any two AP points. We use a spring model layout algo-
rithm – which is similar to a statistical multi-dimensional scaling technique. Any
two APs are connected by a virtual spring with its natural length equal to the
distance between the two APs. The spring model will layout the points such that
points that are near in the abstract 2-D fitness landscape are approximately near
in the actual n-dimensional space and vice versa. The current implementation
uses the NEATO algorithm from Graphviz [19] to do the AP layout.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

20 S. Halim and R.H.C. Yap

Fig. 2. AP Layout Phase using a spring model. This follows gestalt law of proximity
[20], APs that are near (far) with each other are viewed as clustered (spread).

Fig. 3. AP Labeling Phase. This follows gestalt law of similarity [20]. APs with similar
color and shape are grouped together by the human perception system. The perception
laws of proximity and similarity are utilized in this fitness landscape visualization.

4. AP Labeling Phase (see Fig. 3)
Next, we label the APs based on their quality using the AP legend in Fig. 3. We
use both color and shape to label the quality of the APs because even though
color alone is easily seen on the screen, it is hard to see in black and white print.
Newly added APs from recent runs are highlighted with a pink border so that
the positions and qualities of the new APs can be easily identified.

The purpose of AP layout and labeling is to identify patterns in the fitness
landscape at a glance, e.g. the distribution (clustered, spread, etc) and the quality
(low variance ≈ smooth, high variance ≈ rugged, etc) of the old and new anchor
points. This visualization extends the well known FDC scatter plot as it provides
more information at a glance. It does not only measure distance and fitness w.r.t
best found solution but within all APs in the AP set.

In Fig 7, we show an alternative side view of the abstract 2-D fitness landscape
that emphasizes the smoothness or ruggedness of the APs.

5. Search Trajectory Layout Phase (see Fig 4)
Finally, we measure the distance between each point of the SLS run w.r.t to all
points in the selected AP set. When the current point in the SLS run is near
(by the distance metric) to one or more AP (this is possible since the points
are n-dimensional), we draw a circle on those APs indicating that the current
point is near those APs. Otherwise, we draw an indicator (see the example of a
radar-like box in Fig 10, left) to tell how far is the current point to the nearest
AP. This nearness factor is adjustable, ranges from 0 (exact match) to n (total
mismatch), and is visualized via the radius of the enclosing circle. The drawing
of the search trajectory as a trail is done over time using animation to indicate
how the search progresses.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Designing and Tuning SLS Through Animation and Graphics 21

Fig. 4. Search Trajectory Layout Phase. The animation uses gestalt law of closure [20].
When the search trajectory is near an AP A and then quickly moves to AP B, human
perception will fill in the details that the search traverses points along AP A→AP B.
Run 1: SLS starts from a very bad AP A, walks to a medium quality AP E, and then
cycles near AP C. Run 2: SLS starts from a bad AP B, then walks to a point near AP
C (assume in Fig 1, the green point F in SLS run 2 happens to be near AP C), then
moves to a very bad AP A (poor intensification). Run 3: SLS starts from a very bad
AP A, but gradually walks to a medium AP C, escapes from it, then arrives at a good
AP D (good intensification, compare this to Run 1 which is stuck in an attractive AP
C). Run 4: The search trajectory of the SLS only bypasses a very bad AP A and is
not near any other known APs (failure to navigate to promising region).

In Fig 4, we describe some possible interpretations of the search trajectories
which are based on the four runs in Fig 1 and the fitness landscape in Fig 2 and
Fig 3. As Fig 4 is static, we have represented the animation with arrows.

Remarks. Good visualization can help explaining information better than tex-
tual output alone. We note that for particular COPs, e.g. Traveling Salesman
Problem (TSP), one could come up with a natural problem-specific visualiza-
tions, e.g. TSP tour visualization. However such visualizations may not show the
features of the fitness landscape or search trajectory well and furthermore, some
problems may not have a natural problem-specific visualization.

Viz Experiment Wizard (EW). To assist the user in preparing the SLS
experiment design, executing the SLS runs, showing gross information about the
runs, managing log files, and most importantly: to compute FLST visualization
information as described above, we developed a tool called Viz EW; see Fig. 5.

Viz Single Instance Multiple Runs Analyzer (SIMRA). To visualize the
fitness landscape of a COP instance and one (or more — currently only two)
SLS trajectory on the same instance, we use Viz Single (COP) Instance Multiple
(SLS) Runs Analyzer (SIMRA). It uses the visualization information produced
by Viz EW and animates it in real time like a VCR according to the search
time recorded in the RunLog file. The visuals in Fig. 6, label ‘A’, give linked
animations of FLST visualization as described in Fig. 1-4, objective value over
time, FDC visualizations, algorithm specific visualizations (eg. tabu tenure over
time), and problem specific visualizations (eg. QAP data matrices structure). It
also displays textual information – see Fig. 6, label ‘B’.

For other details about Viz GUI and visual features that are not included in this
paper, please see http://www.comp.nus.edu.sg/~stevenha/viz or [5,13,14,15].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

22 S. Halim and R.H.C. Yap

Fig. 5. Left: Viz EW has a GUI to specify: problem (A), algorithm (B), experiment
(C) design, and time limit per instance (D). Right: Results can be grouped with
context-sensitive statistical data in the group heading (E). The objective value sum-
mary visualization (F) gives a rough overview of the performance of the runs at a
glance. The runs can be analyzed in detail with Viz SIMRA (see Fig. 6).

Fig. 6. The screen shot of Viz SIMRA for FLST and other visualizations

3 A Step by Step Walk-Through with Ro-TS for QAP

In this section, we give an in-depth walk-through which shows how to incorporate
the visualizations in Viz into the entire design and tuning of the SLS development
process. Our objective is to show how visualization allows us to more easily
understand the COP fitness landscape and the SLS trajectory. This then allows
new improvements on the insights gained from visualization. We also show Viz
features for simplifying the SLS development process.

The COP used is the Quadratic Assignment Problem (QAP) with benchmark
instances from QAPLIB [21]. We have purposely chosen a classic COP for this

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Designing and Tuning SLS Through Animation and Graphics 23

Table 1. Initial Ro-TS-I Configuration

Component Choice Remark
Neighborhood 2-Opt Natural (swap) move operation for QAP.
Objective Function delta Measure delta as shown in [17].
Tabu Tenure (TT) n The default tabu tenure length.
Tabu ‘Table’ [17] pair i − j Item i cannot be swapped with j for TT steps.
Aspiration Criteria Better Override tabu if move leads to better solution.
Search Strategy ‘Ro-TS’ [17] Change TT within [90%∗n-110%∗n] every 2n steps.

walk-through so that the reader can appreciate the walk-through and the results
easier. We know the best known (BK) objective values for each QAP instances in
this benchmark library. From this, we have defined the following solution quality
measures: good (< 1%-off BK), medium (1% − 2%-off BK), bad (2% − 3%-off
BK), and very bad (> 3%-off BK) points.

For the experiments, we have fixed the number of iterations of every SLS run
to be quite ‘small’: 5n2 iterations, where n is the instance size. This is because
state-of-the-art SLS algorithms (including the one we use) can obtain (near)
optimal solutions for many QAPLIB instances with long runs. The goal of this
experiment is to design and tune an SLS algorithm for attacking the selected
QAP instances within the 5n2 iteration bound.

We remark that for the purpose of simplifying the walk-through and reducing
the number of visuals, we have taken the liberty of presenting this walk-through
from the final step viewpoint in order to fit the walk-through within page con-
straints. Most of the FLST visualizations make use of the final AP set from good
and bad runs from the entire development process. In the actual development
process, we learn the fitness landscape structure and the search trajectory be-
havior incrementally. In Section 3.7, we give an example of our learning process
for obtaining the final AP set used in the walk-through.

3.1 Experiment Set-Up: QAP Instances and Baseline Algorithm

We pick Taillard’s QAP instances: tai30a/30b/35a/35b/50a/50b as training in-
stances and tai40a/40b/60a/60b as test instances. These artificial QAP instances
are chosen because the real life instances in QAPLIB are quite ‘small’ (≤ 36).
The selected instances vary in size and have been generated using two strategies:
uniformly generated matrices proposed in 1991 [17] and non-uniform matrices
which resemble real-life instances proposed in 1995 [22]. For our purposes, we
should imagine that initially we are unaware of the distinction between these
two types, perhaps we are only at the 1991 time point.

There are several (successful) SLS proposals for QAP in the literature, for
example: Robust Tabu Search (Ro-TS) [17]. We use Ro-TS as our baseline SLS
— it is already a good SLS for QAP. Our implementation, which we called
Ro-TS-I, uses a configuration similar to Ro-TS. The details are in Table 1.

We conduct some pilot runs. Ro-TS-I results are given in Table 2. It seems
that within the limited iteration bound, the initial results are reasonably good for

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

24 S. Halim and R.H.C. Yap

Fig. 7. Fitness landscape overview of two types of QAP instances (tai30a and tai30b)
with the same label setting (see Fig. 3). The best found solution is always in the
center. The anchor points in tai30a and tai30b are both spread throughout the fitness
landscape and may be as far as the problem diameter (30 distance units). However,
the quality of the anchor points in tai30b seems to be more ‘rugged’ than tai30a,
especially when viewed using side view mode (the visualization is rotated 90 degrees
along horizontal axis. The y-axis now shows the fitness of each AP w.r.t BK value).

tai30a/35a/35b/50a but not for tai30b/50b (underlined). We want to investigate
why this happens and find out how to adjust Ro-TS-I.

3.2 Fitness Landscapes of QAP and Ro-TS-I Behavior

Using the final AP set (see Section 3.7) and with a Hamming distance metric
[18], we observe the fitness landscape of QAP instances as shown in Fig. 7. We
observe a significant difference between tai30a (and tai35a/50a) and tai30b (and
tai35b/50b). See the figure text for details.

A working hypothesis from this observation is that there are at least two
classes of QAP instances. The next question is how to identify which instance
belongs to which class? Recall that we are not assuming that we know about the
underlying problem instance generators. By looking at the fitness landscape vi-
sualizations and data matrices of the QAP instances, we classify tai30a/35a/50a
(training), tai40a/60a (test) as QAP (type A) instances and tai30b/35b/50b
(training), tai40b/60b (test) as QAP (type B) instances. This is consistent with
the characteristics of these classes which differ in the smoothness (type A) or
ruggedness (type B) in the fitness landscape visualization and in the uniformity
(type A) and non-uniformity (type B) of their data matrices.

In Fig. 9 (left) we observe that Ro-TS-I already has reasonable performance on
the QAP (type A) instances. This may be because the gap among local optima
is small — the quality of most APs are either blue circle (good) or green triangle
(medium). The animations of search trajectories do not indicate any obvious

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Designing and Tuning SLS Through Animation and Graphics 25

Fig. 8. Hypotheses of what the idealized good walks (blue dashed lines) should look
like on QAP (type A/B) instances and the actual Ro-TS-I behavior (red dotted lines)

sign of Ro-TS-I being stuck in a local optimum (explained textually: the search
trajectory is found to be near one AP, quickly escapes from it, and later appears
to be near another different AP). However, none of the Ro-TS-I runs gets the
best known objective value within the limited iteration bound.

However, the performance of the same Ro-TS-I on the QAP (type B) instances
is very bad. In Fig. 10 (left) we observe that Ro-TS-I never visits any known
good APs. Prior to obtaining the final AP set (see Section 3.7), we observe
that Ro-TS-I often gets stuck in a bad local optimum region and cannot escape
(explained textually: the search trajectory enters a region near one AP, then until
the last iteration, it is still near the same AP). If that local optimum happens
to be bad, the final best found solution reported will also be bad.

3.3 Hypotheses to Improve Walks on the QAP Fitness Landscapes

From the visualizations, the algorithm designers can arrive at the following two
hypotheses on how the SLS should behave on these two classes:

(1). QAP (type A) landscape is more smooth, so it is hard to decide where to
navigate as ‘everything’ looks good. Diversifying too much may not be effective
since we will likely end up in another region with similar quality. Our hypothesis:
it is better for the SLS to reduce the possibility of missing the best solution
within a close region where the SLS is currently in. Fig. 8 (left) illustrates our
hypothesis and shows the desired trajectory (blue dashed lines) searches around
nearby good local optima rather than the trajectory of Ro-TS-I (red dotted
lines) which moves away from the good local optima region.

(2). QAP (type B) landscape is more rugged, the local optima are deeper and
spread out. Thus, we hypothesize that within the limited iteration bound, rather
than ‘struggling’ to escape deep local optima with its own strength (e.g. via tabu
mechanism), it is better for the SLS to do frequent strong diversifications as we
know it is hard to escape from deep local optima and the ‘nearest’ local optima
may be quite ‘far’ anyway. Fig. 8 (right) illustrates our hypothesis where the
desired trajectory (blue dashed lines) only makes short runs in a region before

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

26 S. Halim and R.H.C. Yap

Fig. 9. Search coverage of Ro-TS-I (left) and Ro-TS-A (right) on QAP (type A) in-
stance. Ro-TS-I (see large red circles) covers some of medium quality APs then wanders
somewhere else far from known APs (animation not shown). On the other hand, lower
Tabu Tenure Range in Ro-TS-A enables it to take different trajectory which covers
some good quality APs (see large blue circles).

jumping elsewhere rather than the trajectory of Ro-TS-I (red dotted lines) which
struggles to escape a deep local optimum.

3.4 Tweaking Ro-TS-I to Ro-TS-A for QAP (Type A) Instances

The search coverage (APs that are near any points in search trajectory are
highlighted) of Ro-TS-I on QAP (type A) instances is not good (see Fig. 9, left).

Visualization shows that Ro-TS-I actually gets near to known good APs but
does not in the end navigate to those APs. Thus the good APs are missed. One
reason may be that during short Ro-TS-I runs (5n2 iterations), there are some
Ro-TS-I moves leading to such good APs that are under tabu status and are not
overridden by aspiration criteria.

The idea for robustness in Ro-TS [17] is in changing the tabu tenure ran-
domly during the search within a defined Tabu Tenure Range (TTR). The
TTR is defined by Tabu Tenure Low (TTL) and Tabu Tenure Delta (TTD)
as follows: TTR = [TTL, TTL + TTD]. To encourage more intensification,
we modify the Ro-TS-I by decreasing TTR from the recommendation in [17],
TTR = [0.9n, 1.1n] into a lower range and changing the robust tabu tenure value
more often (after n steps, not after 2n steps, see Table 2).

Since we do not have information on the best TTR for Ro-TS-I, except that it
should be lower, we experimented with various TTR settings. TTR = [0.4n, 0.8n]
performed well on the training instances and also slightly better than the original
Ro-TS-I (see Table 2).

We denote Ro-TS-I with lower TTR by Ro-TS-A. We observed that although
TTR is smaller, it is still enough to ensure that Ro-TS-A avoids solution cycling.
This may be because it is quite easy to escape from any local optima of smooth
fitness landscape of QAP (type A) instances. Fig. 9 (right) shows the search
coverage of Ro-TS-A which seems better than the search coverage of Ro-TS-I.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Designing and Tuning SLS Through Animation and Graphics 27

3.5 Tweaking Ro-TS-I to Ro-TS-B for QAP (Type B) Instances

Visualization reveals that Ro-TS-I does not manage to arrive near any of the
known good APs. This leads to a very bad performance (see Fig. 10, left).

In Fig. 10 (left), if circle ‘X’ is outside circle ‘Y’, it means that no AP is near
the current point of the search trajectory of Ro-TS-I. The inability of Ro-TS-I to
arrive at any known good APs combined with our understanding of QAP (type
B) fitness landscape (Section 3.7) tells us that Ro-TS-I is stuck in deep, poor
quality local optima and fails to navigate to a good quality region.

We have learned that in order to make Ro-TS-I behave more like our hypoth-
esis, we need to add a strong diversification strategy. We tweak Ro-TS-I such
that after n non improving moves, Ro-TS-I is considered to be stuck in a deep
local optimum. To escape from it, we employ a strong diversification mechanism
which preserves max(0, n-X) items and randomly permutates the assignment of
the other min(n, X) items in the current solution. The value of X must be suf-
ficiently large: close to n but not equal to n, otherwise it would be tantamount
to random restart. The rationale for this strong diversification heuristic is that
we see in the fitness landscape that blue circle (good) APs in type B instances
are located quite far apart but not as far as the problem diameter n.

Now, it remains to determine the value of the diversification strength X . We
experimented with different values of X on tai30b and obtained good results
when X=20. However, for other training instance tai50b, the best value for X is
when X=30. Visualization shows that even with X=20 (out of diameter n=50),
Ro-TS-I still has problem in escaping local optima of tai50b.

From this, we realize that X should not be fixed for all QAP (type B) in-
stances but rather be robust within a range correlated with the instance size.
After further experimentation, we arrived at a good range for X to be [34n..78n],
performing well on the training instances. The value of X will be randomly
changed within this range after each diversification step.

We denote the revised SLS algorithm by Ro-TS-B. Animation shows that Ro-
TS-B visits several APs with varying qualities, each for short time. Some APs
visited by Ro-TS-B have good quality (see Fig. 10 (right) and Table 2).

3.6 Benchmarking on the Test Instances

Finally, we verify the results against the test instances (also with the same iter-
ation bound). The results are given in Table 2. On average, Ro-TS-A performs
slightly better than Ro-TS-I on QAP (type A) instances while Ro-TS-B is sig-
nificantly better than Ro-TS-I on QAP (type B) instances. The results here are
also comparable to the updated Ro-TS results in [22].

We see that applying either Ro-TS-A or Ro-TS-B to the other instance class
has no or negative improvements (underlined). This shows that we have success-
fully tailored RoTS to match the different fitness landscapes of these instances.

3.7 The Learning Process

The fitness landscape of a COP instance is typically exponentially large. It is
infeasible to enumerate all solutions just to analyze parts of the solutions visited

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

28 S. Halim and R.H.C. Yap

Fig. 10. Search coverage of Ro-TS-I (left) and Ro-TS-B (right) on QAP (type B)
instance. Ro-TS-I (left) never arrives at any known good APs. On the other hand, Ro-
TS-B (right) employs frequent strong diversifications and we see that it visits several
APs of varying qualities (see large blue circles) that are (very) far from each other.

Table 2. The results of Ro-TS-I, Ro-TS-A, and Ro-TS-B on training and test instances
– averaged over 5 runs per instance. The instance size n, Best Known (BK) objective
value, maximum iteration bound (5n2), run times, average percentage deviation x̄ from
BK and its standard deviation σ are given.

Training Instances

Instance n Best Known Iters Time
Ro-TS-I Ro-TS-A Ro-TS-B
x̄ σ x̄ σ x̄ σ

tai30a 30 1818146 4500 3s 1.1 0.4 1.0 0.3
tai35a 35 2422002 6125 5s 1.1 0.2 1.1 0.1
tai50a 50 4938796 12500 18s 1.5 0.1 1.4 0.3
tai30b 30 637117113 4500 3s 16.1 0.0 0.2 0.1
tai35b 35 283315445 6125 5s 1.8 0.0 0.3 0.0
tai50b 50 458821517 12500 18s 7.5 0.0 0.7 0.2

Test Instances
tai40a 40 3139370 8000 8s 1.4 0.1 1.0 0.5 2.0 0.2
tai60a 60 7205962 18000 34s 1.7 0.1 1.6 0.2 2.2 0.3
tai40b 40 637250948 8000 8s 9.0 0.0 9.0 0.1 0.0 0.1
tai60b 60 608215054 18000 35s 2.1 0.1 2.9 0.2 0.3 0.1

by the SLS trajectory. As with other white-box approaches, FLST visualization
must rely on progressive learning based on the solutions found by non-exact
approaches. Here, we show our learning example for QAP (type B) instances:

Starting with Ro-TS-I, we obtained a fitness landscape (see Fig. 11. A) with
APs that are uniform, very bad (because we know the BK value), but not too
far from each other (average pairwise distance between APs is ≈ 1

3n). We were
curious why Ro-TS-I was stuck and added random restart diversification. Then,
Ro-TS-I visited new (pink borders) and better APs (see Fig. 11. B) which are
quite far from the previous very bad APs. These better points are located in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Designing and Tuning SLS Through Animation and Graphics 29

Fig. 11. The learning process for understanding QAP (type B) fitness landscape

a deep valley as the fitness gaps between them and their immediate neighbors
are quite big. Soon, we learned that QAP (type B) has multiple deep valleys
scattered far apart (see Fig. 11. C, D). The distance between good APs are
quite far but not as much as n. This tells us that good APs have similar sub-
structures which inspires the strategy in Section 3.5.

For instances where BK values are not known (especially for new problems),
we know less but we can still evaluate SLS performance w.r.t to what we have,
e.g. in QAP (type B) example above, finding a new (better) AP that is far from
any poorer APs that are known so far indicates the need of diversification.

4 Conclusion

In this paper, we have described the Viz system and have shown an extended
walk-through using Viz. The walk-through shows how to design and tune a
baseline Ro-TS algorithm for the QAP. The insights from visualization results in
two improved variants. We believe that the example is realistic and demonstrates
why visualization is an interesting approach for designing and tuning SLS.

Viz is still under development but the prototype sytem can be downloaded
from: http://www.comp.nus.edu.sg/~stevenha/viz.

Acknowledgements

We would like to thank the reviewers and the editors for their constructive inputs
to improve the paper.

References

1. Charon, I., Hudry, O.: Mixing Different Components of Metaheuristics. In: Meta-
Heuristics: Theory and Applications, pp. 589–603. Kluwer (1996)

2. Birattari, M.: The Problem of Tuning Metaheuristics as seen from a machine learn-
ing perspective. PhD thesis, Université Libre de Bruxelles (2004)

3. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Mor-
gan Kaufmann, San Francisco (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

30 S. Halim and R.H.C. Yap

4. Adenso-Diaz, B., Laguna, M.: Fine-tuning of Algorithms Using Fractional Exper-
imental Designs and Local Search. Operations Research 54(1), 99–114 (2006)

5. Halim, S., Lau, H.: Tuning Tabu Search Strategies via Visual Diagnosis. In: Meta-
Heuristics: Progress as Complex Systems Optimization, Kluwer (2007)

6. Monett-Diaz, D.: +CARPS: Configuration of Metaheuristics Based on Cooperative
Agents. In: International Workshop on Hybrid Metaheuristics, pp. 115–125 (2004)

7. Hutter, H., Hamadi, Y., Hoos, H., Leyton-Brown, K.: Performance Prediction and
Automated Tuning of Randomized and Parametic Algorithms. In: International
Conference on Principles and Practice of Constraint Programming, pp. 213–228
(2006)

8. Merz, P.: Memetic Algorithms for Combinatorial Optimization: Fitness Landscapes
& Effective Search Strategies. PhD thesis, University of Siegen, Germany (2000)

9. Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation: The
New Experimentalism. Springer, Heidelberg (2006)

10. Klau, G., Lesh, N., Marks, J., Mitzenmacher, M.: Human-Guided Tabu Search. In:
National Conference on Artificial Intelligence (AAAI), pp. 41–47 (2002)

11. Syrjakow, M., Szczerbicka, H.: Java-based Animation of Probabilistic Search Algo-
rithms. In: International Conference on Web-based Modeling and Simulation, pp.
182–187 (1999)

12. Kadluczka, M., Nelson, P., Tirpak, T.: N-to-2-Space Mapping for Visualization of
Search Algorithm Performance. In: International Conference on Tools with Artifi-
cial Intelligence, pp. 508–513 (2004)

13. Lau, H., Wan, W., Halim, S.: Tuning Tabu Search Strategies via Visual Diagnosis.
In: Metaheuristics International Conference, pp. 630–636 (2005)

14. Halim, S., Yap, R., Lau, H.: Visualization for Analyzing Trajectory-Based Meta-
heuristic Search Algorithms. In: European Conference on Artificial Intelligence, pp.
703–704 (2006)

15. Halim, S., Yap, R., Lau, H.: Viz: A Visual Analysis Suite for Explaining Local
Search Behavior. In: User Interface Software and Technology, pp. 57–66 (2006)

16. Schneider, J., Kirkpatrick, S.: Stochastic Optimization. Springer, Heidelberg (2006)
17. Taillard, E.: Robust Tabu Search for the Quadratic Assignment Problem. Parallel

Computing 17, 443–455 (1991)
18. Schiavinotto, T., Stützle, T.: A Review of Metrics on Permutations for Search

Landscape Analysis. Computers and Operation Research 34(10), 3143–3153 (2007)
19. Graphviz: Graph Visualization Software, http://www.graphviz.org
20. Ware, C.: Information Visualization: Perception for Design. Morgan Kaufmann,

San Francisco (2004)
21. QAPLIB: Quadratic assignment problem library, http://www.seas.upenn.

edu/qaplib
22. Taillard, E.: Comparison of Iterative Searches for the Quadratic Assignment Prob-

lem. Location Science 3, 87–105 (1995)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.graphviz.org
http://www.seas.upenn.edu/qaplib
http://www.seas.upenn.edu/qaplib

Implementation Effort and Performance
A Comparison of Custom and Out-of-the-Box Metaheuristics

on the Vehicle Routing Problem with Stochastic Demand

Paola Pellegrini1 and Mauro Birattari2

1 Department of Applied Mathematics, Università Ca’ Foscari, Venice, Italy
2 IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium

paolap@pellegrini.it, mbiro@ulb.ac.be

Abstract. In practical applications, one can take advantage of meta-
heuristics in different ways: To simplify, we can say that metaheuristics
can be either used out-of-the-box or a custom version can be developed.
The former way requires a rather low effort, and in general allows to
obtain fairly good results. The latter implies a larger investment in the
design, implementation, and fine-tuning, and can often produce state-of-
the-art results.

Unfortunately, most of the research works proposing an empirical
analysis of metaheuristics do not even try to quantify the development
effort devoted to the algorithms under consideration. In other words,
they do not make clear whether they considered out-of-the-box or cus-
tom implementations of the metaheuristics under analysis. The lack of
this information seriously undermines the generality and utility of these
works.

The aim of the paper is to stress that results obtained with out-of-
the-box implementations cannot be always generalized to custom ones,
and vice versa. As a case study, we focus on the vehicle routing prob-
lem with stochastic demand and on five among the most successful
metaheuristics—namely, tabu search, simulated annealing, genetic algo-
rithm, iterated local search, and ant colony optimization. We show that
the relative performance of these algorithms strongly varies whether one
considers out-of-the-box implementations or custom ones, in which the
parameters are accurately fine-tuned.

1 Introduction

The term metaheuristics [1] recently became widely adopted for designating a
class of approaches used for tackling optimization problems.

A metaheuristic is a set of algorithmic concepts that can be used to define
heuristic methods applicable to a wide set of different problems.

[2, p. 25]

The generality of metaheuristics and the ease with which they can be applied to
the most diverse combinatorial optimization problems is definitely the main rea-
son for their success. A basic implementation of metaheuristic can be obtained

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2007, LNCS 4638, pp. 31–45, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

32 P. Pellegrini and M. Birattari

with quite a low effort. Typically, with such an implementation, it is possible
to achieve fairly good results. Nonetheless, it has been shown in the literature
that metaheuristics can obtain state-of-the-art results with some larger imple-
mentation effort. To simplify, we can say that metaheuristics can be either used
out-of-the-box or a custom version can be developed.

This flexibility of metaheuristics is definitely a positive feature: One can start
with an out-of-the-box version of a metaheuristic for quickly having some pre-
liminary results and for gaining a deeper understanding of the problem at hand.
One can then move to a custom version for obtaining better performance without
having to switch to a completely different technology.

Nonetheless, this flexibility has a downside:The fact thatmetaheuristics achieve
different results according to the development effort can be reason of misunder-
standing. In particular, it could well happen that, as we show in the case study
proposed in this paper, a metaheuristic M1 performs better than a metaheuristic
M2 on a given problem when out-of-the-box versions of M1 and M2 are consid-
ered; whereas M2 performs better that M1 on the very same problem when cus-
tom versions are concerned. In this sense, results obtained with out-of-the-box
implementations do not always generalize to custom ones, and vice versa.

In the literature, this fact is often neglected and the development effort de-
voted to algorithms is rarely quantified. This can be partially justified by the
fact that measuring development effort is not a simple and well-defined task.
Nonetheless, without this piece of information, the usefulness of an empirical
study is somehow impaired.

With this paper we wish to stress that two experimental studies, one per-
formed in the out-of-the-box context, and the other in the custom one, may
lead to different conclusions. To this aim, we consider as a case study the ve-
hicle routing problem with stochastic demand, and five of the most successful
metaheuristics—namely, tabu search, simulated annealing, genetic algorithm, it-
erated local search, and ant colony optimization. Our goal is to show that the
relative performance of the above metaheuristics depends on the implementa-
tions considered.

In order to attenuate the problem concerning the different ability of a single
designer in implementing various approaches, we consider the implementations
of the five metaheuristics produced within the Metaheuristics Network,1 a EU
funded research project started in 2000 and accomplished in 2004. In the Meta-
heuristics Network, five academic groups and two companies, each specialized
in the development and application of one or more of the above metaheuris-
tics, joined their research efforts with the aim of gathering a deeper insight
into the theory and practice of metaheuristics. For a detailed description of the
metaheuristics developed by the Metaheuristics Network for the vehicle routing
problem with stochastic demand, we refer the reader to [3].

In our analysis, these implementations are considered as black-box metaheuris-
tics: By modifying their parameters, we obtain the out-of-the-box and the custom
versions. The first ones are obtained by randomly drawing the parameters from

1 http://www.metaheuristics.net/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Implementation Effort and Performance 33

a defined range. The second ones are obtained by fine-tuning the parameters
through an automatic procedure based on the F-Race algorithm [4,5].

Selecting the best values for the parameters, given the class of instances that
are to be tackled, is definitely a sort of customization. By using this element
as the only difference between custom and out-of-the-box implementations, we
are neglecting the customization of most of the components of metaheuristics.
Nonetheless, the goal of the paper is to show that an analysis based on custom
implementations might produce radically different results from one based on
out-of-the-box implementations. If we succeed to show this fact when even one
single element characterizing custom implementations is considered, namely the
fine-tuning of parameters, we have nevertheless reached our goal.

It is interesting to note here that Bartz-Beielstein [6] has already addressed
some of the issues discussed in the paper. In particular, he warns against perform-
ing a comparative analysis of algorithms that have not been properly fine-tuned.
The results we present in the paper confirm the concerns raised in [6]. Nonethe-
less, our standpoint is somehow different from the one taken in [6]. Indeed, we
think that analyzing the performance of out-of-the-box versions of metaheuris-
tics can be in itself relevant since in some practical contexts the development
of custom versions of a metaheuristic is not possible due to time and/or budget
constraints.

The rest of the paper is organized as follows. In Section 2, we present a
panoramic view of the literature concerning the vehicle routing problem with
stochastic demand, the metaheuristics considered, and the tuning problem. In
Section 3, we describe the specific characteristics of these elements as they appear
in our analysis. In Section 4, the experimental study is reported. Finally, in
Section 5, we make some conclusions.

2 Literature Overview

The three main topics of interest of our analysis are introduced in this section.
We first focus on the vehicle routing problem with stochastic demand. Then
we sketch the five metaheuristics considered, and the problem of fine-tuning
metaheuristics.

The vehicle routing problem with stochastic demand (VRPSD) can be de-
scribed as follows: Given a fleet of vehicles with finite capacity, a set of customers
has to be served at minimum cost. The demand of each customer is a priori un-
known and only its probability distribution is available. The actual demand is
revealed only when the customer is reached. The objective of the VRPSD is the
minimization of the total expected traveling cost.

Optimal methods, heuristics, and metaheuristics have been proposed in the
literature for tackling this problem. In particular, the problem is first addressed
by [7] in 1969. [8], [9] and [10] use techniques from stochastic programming
to solve optimally small instances. [11] and [12] propose different heuristics for
solving the VRPSD. They consider the construction of an a priori TSP-wise
tour. This tour is then split according to precise rules. [13] propose a strategy

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

34 P. Pellegrini and M. Birattari

for splitting the a priori tour allowing the restocking before a stockout, when
this is profitable. Secomandi [14,15] analyzes different possibilities for applying
dynamic programming to this problem. [16] and [17] tackle the VRPSD using
metaheuristic approaches. In particular, [16] adopt simulated annealing while
[17] use tabu search. Finally, an extended analysis on the behavior of different
metaheuristics is proposed by [3]. Two classical local search algorithms have
been used for the VRPSD: the Or-opt [13] and the 3-opt [3] procedures.

Following [3], we focus on five of the most popular metaheuristics: tabu search
(TS), simulated annealing (SA), genetic algorithm (GA), iterated local search
(ILS), and ant colony optimization (ACO).

Tabu search consists in the exploration of the solution space via a local search
procedure. Non-improving moves are accepted, and a short term memory is
used. The latter expedient is introduced in order to avoid sequences of moves
that constantly repeat themselves [18].
Simulated annealing takes inspiration from the annealing process in crystals
[19]. The search space is explored via a local search procedure. Simulated anneal-
ing escapes from local minima by allowing moves to worsening solutions with a
probability that decreases in time.
Genetic algorithms are inspired by natural selection. In this metaheuristic,
candidate solutions are represented as individuals of a populations that evolve in
time under the effect of a number of operators including crossover and mutation,
which mimic the effects of their natural counterparts [20].
Iterated local search is one of the simplest metaheuristics. It is based on the
reiteration of a local search procedure: It explores the neighborhoods of different
solutions obtained via successive perturbations [21].
Ant colony optimization is inspired by the foraging behavior of ants [2].
Solutions are sampled based on a pheromone model and are used to modify the
model itself biasing the search toward high quality solutions [22].

Each metaheuristic can be seen as a modular structure coming with a set of
components, each typically provided with a set of free parameters. The tuning
problem is the problem of properly instantiating this algorithmic template by
choosing the best among the set of possible components and by assigning specific
values to all free parameters [5]. Only in recent years this problem has been the
object of extensive studies [5,23,24,25,26], although it is generally recognized
to be very important when dealing with metaheuristics. Some authors adopt a
methodology based on factorial design, which is characteristic of a descriptive
analysis. For example, [27] try to identify the relative contribution of five different
components of a tabu-search. Furthermore, the authors consider different values
of the parameters of the most effective components and select the best one. [28]
and [29] use a similar approach. [30] describe a more general technique, which
is nonetheless based on factorial analysis. Another approach to tuning that has
been adopted for example by [26] and by [23] is based on the method that in the
statistical literature is known as response surface methodology. [25] propose a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Implementation Effort and Performance 35

method to determine relevant parameter settings. Some procedures for tackling
the tuning problem have been proposed by [5].

3 Main Elements of the Analysis

The three main elements of the case study considered in the paper are presented
in this section.

3.1 The Problem

The VRPSD is addressed by considering only one vehicle [3,11,12,13]. An a
priori TSP-wise tour is constructed and is then split according to the specific
realizations of the demand of the customers. The objective is finding the a priori
tour with minimum expected cost. The computation of the expected cost of
solutions is based on a dynamic programming recursion that moves backward
from the last node of the sequence. At each node, the decision of restocking or
proceeding is based on the expected cost-to-go in the two cases [13,3].

Two local search procedures are considered: Or-opt and 3-opt [13,3]. Five
methods are used for computing the cost of a move in the local search: Or-
opt(TSP-cost), Or-opt(VRPSD-cost), Or-opt(EXACT-cost), 3-opt(TSP-cost),
3-opt(EXACT-cost). For a detailed description of these techniques we refer the
reader to [3].

A rather large set of instances is needed in order to reach some significant
conclusion with our empirical analysis. The set of instances considered in [3] is
too small for the aim of our research. To the best of our knowledge, these are
the only benchmark instances available for the vehicle routing problem with sto-
chastic demand. For our experiments, we use instances created with the instance
generator described in [31]. We consider instances with either 50 or 60 nodes.

Following [3], we consider instances in which the demand of each customer
is uniformly distributed. The average and the spread of these distributions are
selected randomly extracted from a uniform distribution in the following ranges:
{(20, 30), (20, 35)} for the average, and {(5, 10), (5, 15)} for the spread. The ca-
pacity of the vehicle is 80.

3.2 Metaheuristics

The implementation of the metaheuristics we consider is based on the code
written for [3], which is available at http://iridia.ulb.ac.be/vrpsd.ppsn8.
In the following, we give a short description of the main element characteriz-
ing each algorithm. More details can be found in [32]. The parameters of the
algorithms are briefly explained. As a reference algorithm, following [3], we con-
sidered a random restart local search (RR). It uses the randomized furthest
insertion heuristic plus local search. It restarts every time a local optimum is
found, until the stopping criterion is met—in our case, the elapsing of a fixed
computational time.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

36 P. Pellegrini and M. Birattari

In tabu search, the tabu-list stores partial solutions. An aspiration criterion
allows forbidden moves if the new solution is the new best one. The tabu tenure,
that is, the length of the tabu list, is variable [3]: At each step it assumes a
random value between t(m − 1) and m − 1, where 0 ≤ t ≤ 1 is a parameter
of the algorithm. When 3-opt is used, m is equal to the number of customers.
When Or-opt is used, m is equal to the number of customers minus the length of
the string to move. During the exploration of the neighborhood, solutions that
include forbidden components are evaluated with probability pf and the others
with probability pa. The difference between the EXACT-cost, the VRPSD-cost,
and the TSP-cost implementations concerns only the local search procedure.

Concerning simulated annealing, the probabilistic acceptance criterion
consists in accepting a solution s′ either if it has a lower cost than the current
solution s or, independently of its cost, with probability p(s′|Tk, s) =
exp (Cost(s) − Cost(s′)/Tk) . The relevant parameters of the algorithm are re-
lated to the initial level of the temperature and to its evolution. The starting
value T0 is determined by considering one hundred solutions randomly chosen
in the neighborhood of the first one, by computing the variation of the cost in
this set, and by multiplying this result for the parameter f . At every iteration
k, the temperature is decreased according to the formula Tk = αTk−1, where
the parameter α, usually called cooling rate, is such that 0 < α < 1. If after
n · q · r iterations the quality of the best solution is not improved, the process
known as re-heating [33] is applied: the temperature is increased by adding T0 to
the current temperature. Besides the local search procedure used, the difference
between the EXACT-cost, the VRPSD-cost and the TSP-cost implementations
consists in the way Cost(s′) and Cost(s) are computed. In the TSP-cost, only
the length of the a priori tour is considered.

In the implementation of genetic algorithm, edge recombination [34] con-
sists in generating a tour starting from two solutions by using edges present
in both of them, whenever possible. Mutation swaps adjacent customers with
probability pm. If mutation is adaptive, pm is equal to the product of the pa-
rameter mr (mutation-rate) and a similarity factor. The latter depends on the
number of times the n-th element of the first parent is equal to the n-th element
of the second one. If the mutation is not adaptive, pm is simply equal to mr.
The difference between the EXACT-cost, the VRPSD-cost and the TSP-cost
implementations concerns only the local search procedure adopted.

Iterated local search is characterized by a function that performs a pertur-
bation on solutions. It returns a new solution obtained after a loop of n random
moves (with n number of nodes of the graph) of a 2-exchange neighborhood.
They consist in subtour inversions between two randomly chosen nodes. The
loop is broken if a solution with quality comparable to the current one is found.
We say that the quality of a solution is comparable to the quality of the cur-
rent one if its objective function value is not greater than the objective function
value of the current solution plus a certain value ε. The difference between the
EXACT-cost, the VRPSD-cost and the TSP-cost implementations concerns only
the local search procedure adopted.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Implementation Effort and Performance 37

Candidates

In
st

an
ce

s

Fig. 1. Graphical representation of computation performed by the racing approach.
As the evaluation proceeds, the racing algorithm focuses more and more on the most
promising candidates, discarding a configuration, as soon as sufficient evidence is gath-
ered that it is suboptimal [5].

In this implementation of ant colony optimization, the pheromone trail is
initialized to τ0 = 0.5 on every arc. The first population of solutions is generated
and refined via the local search. Then, a global pheromone update is performed r
times. At each following iteration, p new solutions are constructed by p artificial
ants on the basis of the information stored in the pheromone matrix. After
each step, the local pheromone update is performed on the arc just included in
the route. Finally, the local search is applied to the p solutions and the global
pheromone update is executed.

Local pheromone update: the pheromone trail on the arc (i, j) is modified
according to τij = (1 − ψ)τij + ψτ0, with ψ parameter such that 0 < ψ < 1.

Global pheromone update: the pheromone trail on each arc (i, j) is modified
according to τij = (1 − ρ)τ + ρΔτ bs

ij where Δτbs
ij = Q/Cost Solution bs if arc

(i, j) belongs to Solution bs, and Δτbs
ij = 0 otherwise. ρ is a parameter such that

0 < ρ < 1 and Solution bs is the best solution found so far.

3.3 The Tuning Process

The parameters of all algorithms considered in the paper are tuned through the
F-Race procedure [5,4]. F-Race is a racing algorithm for choosing a candidate
configuration, that is, a combination of values of the parameters, out of prede-
fined ranges. A racing algorithm consists in generating a sequence of nested sets
of candidate configurations to be considered at each step (Figure 1). The set
considered at a specific step h is obtained by possibly discarding from the set
considered at step h − 1, some configurations that appear to be suboptimal on
the basis of the available information. This cumulated knowledge is represented
by the behavior of the algorithm for which the tuning is performed, when using
different candidates configurations. For each instance (each representing one step
of the race) the ranking of the results obtained using the different configurations
is computed and a statistical test is performed for deciding whether to discard
some candidates from the following experiments (in case they appear subopti-
mal) or not. F-Race is based on the Friedman two-way analysis of variance by

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

38 P. Pellegrini and M. Birattari

ranks [35]. An important advantage offered by this statistical test is connected
with the nonparametric nature of a test based on ranking, which does not require
to formulate hypothesis on the distribution of the observations.

4 Experimental Analysis

With the computational experiments proposed in this section we wish to show
that a remarkable difference exists between the results obtained by out-of-the-box
and custom versions of metaheuristics.

As mentioned in the introduction, the two versions of the metaheuristics are
obtained by applying different procedures for setting the values of the para-
meters. The values of the parameters represent only one of the elements that
may be customized when implementing a metaheuristic. In this sense, here the
difference between out-of-the-box and custom implementations may be under-
estimated. Then, our goal is reached by showing that the results achieved with
out-of-the-box implementations cannot be generalized to custom ones even when
the difference between the two simply consists in this element: Any other ele-
ment that can be fine-tuned and customized would simply further reduce the
possibility of generalizing results observed in one context to the other.

In the custom versions, the parameters are accurately fine-tuned with the
F-Race automatic procedure. In the out-of-the-box versions, the values of the
parameters are randomly drawn from the same set of candidate values that is
considered by F-Race for custom versions. Equal probability has been associated
to each configuration and, for each instance considered in the analysis, a random
selection has been performed.

For each of the metaheuristics, besides the methods used for setting the pa-
rameters, the implementations considered in the out-of-the-box and custom ver-
sions are identical.

All experiments are run on a cluster of AMD OpteronTM 244, and 1000 in-
stances are considered. A computation time of 30 seconds is used as a stopping
criterion for all the algorithms.

In order to obtain the custom versions of the metaheuristics through F-Race,
a number of different configurations ranging from 1200 to about 1600 were con-
sidered for each of them. Table 1 reports, for each metaheuristic, the parameters
that have been considered for optimization, the range of values allowed, and
the values that have been selected. A set of 500 instances of the vehicle routing
problem with stochastic demand was available for the tuning. These instances
have the same characteristics of the ones used for the experimental analysis, but
the two sets of instances are disjoint [36]. While tuning a metaheuristic, the F-
Race procedure was allowed to run the metaheuristic under consideration for a
maximum number of times equal to 15 times the number of configurations con-
sidered for that metaheuristic. Also for the random restart local search, a custom
version has been considered. It has been obtained by selecting, through the F-
Race procedure, the best performing local search. In other words, the parameter
that has been optimized in this case is the underlying local search.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Implementation Effort and Performance 39

Table 1. Range of values considered for the parameters of the metaheuristics. The
values reported in bold are the ones selected by F-Race for the custom versions.

Tabu search – total number of candidates = 1460
parameter range
pf 0.1, 0.2, 0.25, 0.3, 0.35, 0.4
pa 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9
t 0.3, 0.4, 0.5, 0.7, 0.8, 0.9, 1
local search Or-opt(TSP-cost), Or-opt(VRPSD-cost), Or-opt(EXACT-cost),

3-opt(TSP-cost), 3-opt(EXACT-cost)
Simulated annealing – total number of candidates = 1200

parameter range
α 0.3, 0.5, 0.7, 0.9, 0.98
q 1, 5, 10
r 10, 20, 30, 40
f 0.01, 0.03, 0.05, 0.07
local search Or-opt(TSP-cost), Or-opt(VRPSD-cost), Or-opt(EXACT-cost),

3-opt(TSP-cost), 3-opt(EXACT-cost)
Genetic algorithm – total number of candidates = 1360

parameter range
pop. size 10, 12, 14, 16, 18, 20, 22, 24
mr 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65,0.7, 0.75,

0.8, 0.85, 0.9
adaptive Yes, No
local search Or-opt(TSP-cost), Or-opt(VRPSD-cost), Or-opt(EXACT-cost),

3-opt(TSP-cost), 3-opt(EXACT-cost)
Iterated local search – total number of candidates = 1520

parameter range
ε n/x, x ∈ {0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0, all multiples of 0.5 up

to 150.0}
local search Or-opt(TSP-cost), Or-opt(VRPSD-cost), Or-opt(EXACT-cost),

3-opt(TSP-cost), 3-opt(EXACT-cost)
Ant colony optimization – total number of candidates = 1620

parameter range
p 5,10, 20
ρ 0.1, 0.5, 0.7
r 100, 150, 200
Q 105, 106, 107, 108, 109

local search Or-opt(TSP-cost), Or-opt(VRPSD-cost), Or-opt(EXACT-cost),
3-opt(TSP-cost), 3-opt(EXACT-cost)

Random restart – total number of candidates = 5
parameter range
local search Or-opt(TSP-cost), Or-opt(VRPSD-cost), Or-opt(EXACT-cost),

3-opt(TSP-cost), 3-opt(EXACT-cost)

First of all, let us compare the results achieved by the metaheuristics in the two
contexts in terms of cost of the best solution returned. The whole distribution of
the difference of the results is reported in Figure 2 for each metaheuristic. The
detail of the region around 0 is presented in Figure 2(b). The cost of the solutions
found by each custom version minus the one of its out-of-the-box counterpart is
considered for each instance. Even if the tails of the distributions are sometimes
very long, it can be observed that almost 75% of the observations fall below the
zero line for all metaheuristics: the difference is in favor of the custom version
in the strong majority of the cases. Moreover, it can be noted that, as it can
be expected, the various metaheuristics are sensitive in different measure to the
value of their parameters. Therefore, they may benefit in different measure from
an accurate fine-tuning. Observing these results, it is immediately clear that, as

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

40 P. Pellegrini and M. Birattari

ACO EA ILS RR SA TS

−
50

00
0

50
00

(a)

ACO EA ILS RR SA TS

−
20

0
−

10
0

0
10

0
20

0

(b)

Fig. 2. Difference between the costs of the solutions obtained by the custom and the
out-of-the-box versions of the metaheuristics under analysis. In Figure 2(a), the entire
distribution is shown for each metaheuristic. Since the distributions are characterized
by long tails, in Figure 2(b) the detail of the more interesting central area is given. For
all metaheuristics, the median of the distribution is below the zero, which means that
the results obtained by the custom versions are in general better than those obtained
by their out-of-the-box counterpart.

expected, the performance achieved by algorithms depend strongly on the values
chosen for the parameters, and then on the contexts considered.

Some further observations can be made considering the distribution of the
ranking achieved by each algorithm. Figures 3(a) and 3(b) report the results
achieved by the custom and out-of-the-box versions, respectively. On the left of
each graph, the names of the algorithms are given. The order in which they

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Implementation Effort and Performance 41

1 3 5

Ranks

RR
SA
TS
GA
ILS

ACO

(a) Custom versions

1 3 5

Ranks

SA
ACO

TS
RR
GA
ILS

(b) Out-of-the-box versions

Fig. 3. Results over 1000 instances of the metaheuristics in the two variants considered

appear reflects the average ranking: The lower the average ranking, the better
the general behavior, and the higher the metaheuristic appears in the list. On
the right, the boxplots represent the distributions of the ranks over the 1000
instances. Between the names and the boxplots, vertical lines indicate if the
difference in the behavior of the metaheuristics is significant according to the
Friedman test: If two metaheuristics are not comprised by the same vertical line,
their behavior is significantly different according to the statistical test considered,
with a confidence of 95%.

As it can be observed, the ranking of algorithms varies in the two contexts: The
two main differences concern RR and ACO. The former performs the worst in
the custom context, while this is not the case in the out-of-the-box context. The
case of a metaheuristic performing worse than the random restart local search is
to be considered as a major failure for the metaheuristic itself. We consider this
point as a remarkable difference between the two contexts: In the out-of-the-box
context, three out of five metaheuristics perform significantly worse than the
random restart local search; in the custom context, all metaheuristics achieve
better results than the random restart local search.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

42 P. Pellegrini and M. Birattari

As far as ACO is concerned, we can draw a conclusion that was suggested by
the representation proposed in Figure 2 and 2(b). In fact, it can observe that
the relative performance is visibly different in the two contexts. The out-of-the-
box version behaves significantly worse than RR, and is among the worst in
the set. On the contrary, the custom version achieves the best average ranking.
This difference shows that this metaheuristic is more sensitive than the others
to variations of the parameters, possibly due to the large number of parameters
of the algorithm. This might be seen as a drawback of ACO. Anyway, we think
that this fact should be read in a different way: If one is interested in an out-
of-the-box metaheuristics, a high sensitivity to the parameters is definitely an
issue; on the other hand, if one wishes to implement a custom metaheuristic, the
sensitivity is an opportunity that can be exploited in order to finely adapt the
algorithm to the class of instances to be tackled.

Another point that can be observed concerns the comparison of the ranking
obtained by the metaheuristics in the two contexts considered, and the one
proposed in [3] on similar instances. Even if, certainly, more experiments are
necessary before drawing conclusion, the general trend reported in [3] appears
very similar to the one obtained in the out-of-the-box context.

These results clearly support our claim according to which there is a strong
difference between the performance of metaheuristics used out-of-the-box or in
a custom way. Moreover, they make us to wonder whether the versions that can
be found in the literature are necessarily to be considered custom, when applied
to problem instances that differ from those considered in the original study.

5 Conclusions

In the paper, five of the most successful metaheuristics, namely tabu search,
simulated annealing, genetic algorithm, iterated local search, and ant colony
optimization, have been compared on the vehicle routing problem with stochastic
demand. These five metaheuristics and this same optimization problem have
been the focus of a research recently published by [3].

Each approach has been considered both in an out-of-the-box and in a cus-
tom version. The procedure used for choosing the values of the parameters is
the element that differentiates a custom version of a metaheuristic from the
corresponding out-of-the-box one: In the former, the parameters are fine-tuned
through the F-Race algorithm. In the latter, they are drawn at random. Our goal
is to highlight that results obtained in one context cannot be directly generalized
to the other.

As it could be expected, the empirical results show that the custom version of
each metaheuristic achieves better results than the corresponding out-of-the-box
one. The difference is always statistically significant according to the Friedman
test. Moreover, the relative performance of algorithms differs greatly in the two
contexts. This can be ascribed to the fact that different metaheuristics might be
more or less sensitive to variations of their parameters.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Implementation Effort and Performance 43

On the basis of this case study, we can conclude that there may be a strong
difference in the results achievable by using the out-of-the-box or the custom
version of metaheuristics. This difference may concern both the quality of the
solutions returned by an approach, and the relative performance of algorithms.
As a consequence, one should clearly describe the implementation criteria fol-
lowed in the design of an algorithm, in order to allow the readers to focus on the
more suitable implementations, given their specific goals.

The experimental analysis raises doubts on the possibility of a priori ascribing
the results that are reported in the literature to one of the two contexts. The
computations reported suggest that this is not the case. A further analysis needs
to be devoted to this point.

Acknowledgments. This work was supported by the ANTS project, an Action
de Recherche Concertée funded by the Scientific Research Directorate of the
French Community of Belgium.

References

1. Glover, F.: Future paths for integer programming and links to artificial intelligence.
Computers & Operations Research 13, 533–549 (1986)

2. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge, MA,
USA (2004)

3. Bianchi, L., Birattari, M., Chiarandini, M., Manfrin, M., Mastrolilli, M., Paquete,
L., Rossi-Doria, O., Schiavinotto, T.: Hybrid metaheuristics for the vehicle routing
problem with stochastic demands. Journal of Mathematical Modelling and Algo-
rithms 5(1), 91–110 (2006)

4. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for
configuring metaheuristics. In: Langdon, W. (ed.) GECCO 2002: Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 11–18. Morgan Kaufmann,
San Francisco (2002)

5. Birattari, M.: The problem of tuning metaheuristics as seen from a machine learn-
ing perspective. PhD thesis, Université Libre de Bruxelles, Brussels, Belgium (2005)

6. Bartz-Beielstein, T.: Experimental analysis of evolution strategies - overview and
comprehensive introduction. Technical Report CI-157/03, Interner Bericht des
Sonderforschungsbereichs 531 Computational Intelligence, Universität Dortmund,
Dortmund, Germany (2003)

7. Tillman, F.: The multiple terminal delivery problem with probabilistic demands.
Transportation Science 3, 192–204 (1969)

8. Stewart, W., Golden, B.: Stochastic vehicle routing: a comprehensive approach.
European Journal of Operational Research 14, 371–385 (1983)

9. Dror, M., Trudeau, P.: Stochastic vehicle routing with modified saving algorithm.
European Journal of Operational Research 23, 228–235 (1986)

10. Laporte, G., Louveau, F., Mercure, H.: Models and exact solutions for a class of
stochastic location-routing problems. Technical Report G-87-14, Ecole des Hautes
Etudes Commerciale, University of Montreal, Montreal, Canada (1987)

11. Bertsimas, D.: A vehicle routing problem with stochastic demand. Operations Re-
search 40(3), 574–585 (1992)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

44 P. Pellegrini and M. Birattari

12. Bertsimas, D., Simchi-Levi, D.: A new generation of vehicle routing research: robust
algorithms, addressing uncertainty. Operations Research 44(3), 286–304 (1996)

13. Yang, W., Mathur, K., Ballou, R.: Stochastic vehicle routing problem with restock-
ing. Transportation Science 34(1), 99–112 (2000)

14. Secomandi, N.: A rollout policy for the vehicle routing problem with stochastic
demands. Operations Research 49, 796–802 (2001)

15. Secomandi, N.: Analysis of a rollout approach to sequencing problems with sto-
chastic routing applications. Journal of Heuristics 9, 321–352 (2003)

16. Teodorović, D., Pavković, G.: A simulated annealing technique approach to the
VRP in the case of stochastic demand. Transportation Planning and Technology 16,
261–273 (1992)

17. Gendreau, M., Laporte, G., Séguin, R.: A tabu search heuristic for the vehicle
routing problem with stochastic demands and customers. Working paper, CRT,
University of Montreal, Montreal, Canada (1994)

18. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Norwell, MA,
USA (1997)

19. Ingber, L.: Adaptive simulated annealing (ASA): lessons learned. Control and Cy-
bernetics 26(1), 33–54 (1996)

20. Bäck, T., Fogel, D., Michalewicz, Z. (eds.): Handbook of Evolutionary Computa-
tion. IOP Publishing Ltd. Bristol, UK (1997)

21. Laurenço, H., Martin, O., Stützle, T.: Iterated local search. In: Glover, F., Kochen-
berger, G. (eds.) Handbook of Metaheuristics, pp. 321–353. Kluwer Academic Pub-
lishers, Norwell, MA, USA (2002)

22. Zlochin, M., Birattari, M., Meuleau, N., Dorigo, M.: Model-based search for com-
binatorial optimization: A critical survey. Annals of Operations Research 131(1–4),
373–395 (2004)

23. Adenso-Dı́az, B., Laguna, M.: Fine-tuning of algorithms using fractional experi-
mental designs and local search. Operations Research 54(1), 99–114 (2006)

24. Barr, R., Kelly, J., Resende, M., Stewart, W.: Designing and reporting computa-
tional experiments with heuristic methods. Journal of Heuristics 1(1), 9–32 (1995)

25. Bartz-Beielstein, T., Markon, S.: Tuning search algorithms for real-world appli-
cations: A regression tree based approach. In: Greenwood, G. (ed.) Proc. 2004
Congress on Evolutionary Computation (CEC’04), Piscataway, NJ, USA, pp. 1111–
1118. IEEE Computer Society Press, Los Alamitos (2004)

26. Coy, S., Golden, B., Runger, G., Wasil, E.: Using experimental design to find
effective parameter settings for heuristics. Journal of Heuristics 7(1), 77–97 (2001)

27. Xu, J., Kelly, J.: A network flow-based tabu search heuristic for the vehicle routing
problem. Transportation Science 30, 379–393 (1996)

28. Parson, R., Johnson, M.: A case study in experimental design applied to genetic
algorithms with applications to dna sequence assembly. American Journal of Math-
ematical and Management Sciences 17, 369–396 (1997)

29. Breedam, A.V.: An analysis od the effect of local improvement operators in genetic
algorithms and simulated annealing for the vehicle routing problem. Technical
Report TR 96/14, Faculty of Applied Economics, University of Antwerp, Antwerp,
Belgium (1996)

30. Xu, J., Chiu, S., Glover, F.: Fine-tuning a tabu search algorithm with statistical
tests. International Transactions on Operational Research 5(3), 233–244 (1998)

31. Pellegrini, P., Birattari, M.: Instances generator for the vehicle routing problem
with stochastic demand. Technical Report TR/IRIDIA/2005-10, IRIDIA, Univer-
sité Libre de Bruxelles, Brussels, Belgium (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Implementation Effort and Performance 45

32. Pellegrini, P., Birattari, M.: The relevance of tuning the parameters of metaheuris-
tics. A case study: The vehicle routing problem with stochastic demand. Technical
Report TR/IRIDIA/2006-008, IRIDIA, Université Libre de Bruxelles, Brussels,
Belgium (submitted for journal publication, 2006)

33. Aarts, E., Korst, J., van Laarhoven, P.: Simulated annealing. In: Aarts, E., Lenstra,
J. (eds.) Local Search in Combinatorial Optimization, pp. 91–120. John Wiley &
Sons, Inc. New York, USA (1997)

34. Whitley, D., Starkweather, T., Shaner, D.: The traveling salesman problem and
sequence scheduling: quality solutions using genetic edge recombination. In: Davis,
L. (ed.) Handbook of Genetic Algorithms, pp. 350–372. Van Nostrand Reinhold,
New York, USA (1991)

35. Friedman, J.: Multivariate adaptive regression splines. The Annals of Statistics 19,
1–141 (1991)

36. Birattari, M., Zlochin, M., Dorigo, M.: Towards a theory of practice in metaheuris-
tics design: A machine learning perspective. Theoretical Informatics and Applica-
tions, Accepted for publication (2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Tuning the Performance of the MMAS Heuristic

Enda Ridge and Daniel Kudenko

Department of Computer Science, The University of York, England
Enda.Ridge@googlemail.com, Kudenko@cs.york.ac.uk

Abstract. This paper presents an in-depth Design of Experiments
(DOE) methodology for the performance analysis of a stochastic heuris-
tic. The heuristic under investigation is Max-Min Ant System (MMAS)
for the Travelling Salesperson Problem (TSP). Specifically, the Response
Surface Methodology is used to model and tune MMAS performance with
regard to 10 tuning parameters, 2 problem characteristics and 2 perfor-
mance metrics—solution quality and solution time. The accuracy of these
predictions is methodically verified in a separate series of confirmation
experiments. The two conflicting responses are simultaneously optimised
using desirability functions. Recommendations on optimal parameter set-
tings are made. The optimal parameters are methodically verified. The
large number of degrees-of-freedom in the MMAS design are overcome
with a Minimum Run Resolution V design. Publicly available algorithm
and problem generator implementations are used throughout. The pa-
per should therefore serve as an illustrative case study of the principled
engineering of a stochastic heuristic.

1 Introduction and Motivation

The MMAS heuristic is a member of the Ant Colony Optimisation (ACO) meta-
heuristic family [1]. As such, it is a general purpose approximate algorithm for
solving a variety of related problems. This generality comes at a price. Typi-
cal of most heuristics, ACO algorithms are stochastic and have many possible
tuning parameters that influence their performance. Performance is further in-
fluenced by one or more problem instance characteristics. This presents several
problems for the heuristic engineer. For the heuristic to be of any practical use,
the engineer must be able to:

– Determine the tuning parameters and problem characteristics affecting per-
formance.

– Relate these parameters and characteristics to performance so that the best
parameter settings can be chosen for given problem instance characteristics.

– Allow for the fact that stochastic heuristics will vary in performance between
identical repetitions of the same run.

– Perform a simultaneous analysis of at least two, often conflicting, responses.

This is the parameter tuning problem. Despite the parameter tuning problem
being central to our understanding of heuristic performance, its treatment in

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2007, LNCS 4638, pp. 46–60, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Tuning the Performance of the MMAS Heuristic 47

the literature is lacking. Existing work has indeed provided useful insights into
the likely importance and recommended settings of some tuning parameters.
However, research could be improved by addressing the following concerns.

– Research rarely reports whether parameters were methodically chosen and
how such a choice was made. This leaves the reader with no knowledge of how
to repeat the procedure themselves, if indeed any recognised methodology
was used.

– Research often uses a single performance measure. The stochastic and ap-
proximate nature of heuristics necessitates that we simultaneously consider
at least two conflicting performance measures.

Researchers that do attempt to methodically tune parameters, often do so
with a One-Factor-At-A-Time (OFAT) approach. This approach examines the
influence of a single tuning parameter value while holding all the other para-
meters constant. This paper demonstrates that a well-established methodical
approach, called Design of Experiments (DOE), can successfully be brought to
bear on the parameter tuning problem. The advantages of Design of Experiments
over the OFAT approach are well recognised in other fields [2]:

– Designed experiments require fewer resources, in terms of experiments, time
and material, for the amount of information obtained.

– Designed experiments can estimate interactions between factors1. This is not
the case with OFAT experiments.

– There is experimental information in a larger region of the experiment design
space. This makes process optimisation more efficient because the whole
factor space can be searched.

The paper begins with a background on the MMAS algorithm and TSP prob-
lem domain, introducing and explaining the tuning parameters that will be ex-
amined. The DOE approach is also discussed. Section 3 presents the methodol-
ogy. Sections 4, 5 and 6 describe experiment results. The paper then summarises
some related work and presents our conclusions.

2 Background

2.1 The MMAS Heuristic for the TSP

Max-Min Ant System (MMAS) [3] is a member of the Ant Colony Optimization
(ACO) metaheuristic family. In this research, MMAS is applied to the Travelling
Salesperson Problem (TSP). MMAS has been shown to be one of most effective
ACO algorithms for the TSP [3].

1 A factor is an independent variable manipulated in an experiment. Here, a factor de-
scribes both the tuning parameters and problem characteristics that we manipulate
in the experiments.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

48 E. Ridge and D. Kudenko

The TSP is the problem of visiting a set of cities in the shortest distance
possible such that each city is visited only once. It is a discrete combinatorial
optimisation problem. The TSP is often represented by a graph data structure
where nodes in the graph represent cities and edges represent the cost of moving
between cities.

Broadly, ACO is based on a metaphor of how natural ants forage for food.
Artificial ants create tours of the TSP graph, depositing ‘pheromone’ along graph
edges composing those tours. Ant movement decisions are probabilistic and are
based on the pheromone levels on graph edges and a heuristic incorporating
the cost of moving along an edge. Repeated iteration of the artificial ants’ tour
building and pheromone deposition and decay allow ACO algorithms to converge
on solutions to the optimisation problem.

We summarise MMAS in 7 stages so that the reader can identify the tuning
parameters and their intended affect on performance. More detailed descriptions
are in the literature [1]. The MMAS implementation is a Java port of publicly
available C code2. This port was informally verified to produce the same output
as the original code given several sets of inputs and instances.

STAGE 1 Initialise pheromone: A starting pheromone value is assigned to
all graph edges. In this case, all graph edges are set to

1
ρ · Tnn

where ρ is a parameter discussed later and Tnn is the length of a nearest neigh-
bour tour of the problem.

STAGE 2 Ant Placement: this involves ants being given a starting node on
the graph. We explore two possibilities.

1. Scatter: all ants are scattered across randomly chosen nodes on the graph.
2. Same node: all ants begin at a single randomly chosen node.

STAGE 3 Tour construction: The ant movement decisions are either ex-
plorative or exploitative. A number is uniformly randomly chosen between 0.0
and 1.0. If this number is less than an exploration threshold q, the ant simply
chooses the city with the next best combination of pheromone and edge cost. If
the number is greater than or equal to the exploration threshold, then the ant
makes a probabilistic decision on the next city to visit. The probability a city j
will be chosen by an ant at city i is

pij =
[τij]

α [ηij]
β

∑
l∈Fi

[τil]
α [ηil]

β
, j ∈ Fi

where ηij is the inverse of the cost of edge ij, Fi is the set of all unvisited
(feasible) cites to visit after city i and α and β are parameters. The higher α

2 http://iridia.ulb.ac.be/∼mdorigo/ACO/aco-code/public-software.html

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Tuning the Performance of the MMAS Heuristic 49

and β are, the greater is the influence of their associated terms on the choice of
next city. The maximum and minimum limits on trail pheromone levels are then
updated according to the following:

τmax =
1

ρ · Tbest so far
and τmin =

τmax

2n

where n is the problem size.

STAGE 4 Local search: it is common practice to improve the ants’ tours
with a local search procedure. Given the potentially large number of local search
procedures that could be plugged into MMAS, we chose to experiment without
any local search. However, the methodology and analysis presented here can
incorporate investigating local search.

STAGE 5 Evaporate Pheromone: pheromone on all edges is evaporated
according to τij = (1 − ρ)τij where ρ is a tuning parameter.

STAGE 6 Trail update: Pheromone is then deposited along the trail of a
single ant according to

τij = τij + 1/length of tour

The single ant used for updates is a choice between the best ant from the current
iteration (iteration best ant) or the best ant in all iterations so far (best so far). We
have encountered this choice incorporated into the MMAS logic in two different
ways.

1. Fixed frequency. iteration best ant is used with an occasional use of best so
far according to a fixed frequency.

2. Schedule. iteration best ant is used with an increasingly frequent use of
best so far according to a schedule.

This research uses fixed frequency. Firstly, it is a simpler form of schedule
which should be understood before experimenting with the more complicated
schedule. Furthermore, as with the local search decision, there are many possible
schedules that could be applied. Experimenting with all of these was beyond the
scope of this work.

STAGE 7 Pheromone reinitialisation: Pheromone reinitialisation is trig-
gered when the algorithm is stagnating. The algorithm judges that it is stagnat-
ing when both of two conditions are met3. Firstly, the variation in pheromone
levels (called branching factor) on edges drops below a threshold. Secondly, a
number of iterations since the last improvement is exceeded. In the original
source code, this check was made with a given frequency of iterations. We were
3 The literature cites that one condition OR another has been met .[1, p. 76]. This

research remains compatible with the original source code and uses an AND condi-
tion.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

50 E. Ridge and D. Kudenko

concerned that this would mask the iteration threshold condition so our imple-
mentation checks for reinitialisation after every iteration. If a reinitialisation is
due, trails are reset to τmax.

Further comments. Several further parameters are implicit in the MMAS im-
plementation. The calculation of branching factor is the number of edges whose
pheromone levels exceed the cutoff level given by min + λ(max - min) where
max and min are the maximum and minimum pheromone values on all edges.
This obviously contains a parameter λ which, in this research and the original
source code, was fixed at 0.05.

Ant decisions in tour construction are limited to a candidate list of edges
due to the computational expense of evaluating all edges. A candidate list is an
ordered list of the nearest cities to a given city. The computationally expensive
evaluation of branching factor is also limited in this way.

2.2 Experiment Designs for Response Surface Models

The overall goal of this research is to investigate how changes in algorithm tun-
ing parameters and problem characteristics affect algorithm performance. The
tuning parameters and characteristics we vary are called factors and the perfor-
mance measures we gather are called responses. When investigating the effect of
factors on some response(s), the general approach is to vary those factors over
some number of levels. The experimental region covered by our chosen ranges
of factors is called the design space. We measure the responses and interpolate
these measurements into a response surface over the design space. This is the
Response Surface Methodology (RSM) [4]. One of the most popular families of
designs for building response surfaces are known as the Central Composite De-
signs (CCD). A CCD contains an embedded factorial design4 augmented with
design points at the centre of the design space (centre points) and so-called axial
points located at some distance α from the design centre. The two most pop-
ular CCD designs are the Circumscribed Central Composite and Face-Centred
Central Composite.

The Circumscribed Central Composite (CCC) sets α at such a value that
the axial points create a circle that circumscribes the square defined by the
embedded factorial. The Face-Centered Composite (FCC) sets α such that the
axial points lie on the faces of the square defined by the embedded factorial.This
research uses a Face-Centred Composite design because of the practical limits of
parameters such as the exploration threshold of Section 2.1 where, for example,
0.0 ≤ q ≤ 1.0. Detailed descriptions of CCC and FCD are in the literature [4].

The use of a full factorial in the embedded part of a CCD is expensive. A
crossing of say 12 factors (as needed in this research), each at the minimum of 2
levels, would require 212 = 4096 design points for the embedded factorial alone.
Recently, a state-of-the-art design called a Minimum Run Resolution V design
has been introduced [5]. This provides a vast saving in experiment runs while
still allowing all main and second-order interactions to be estimated.
4 A full factorial design crosses all levels of all factors with one another.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Tuning the Performance of the MMAS Heuristic 51

3 Methodology

3.1 Stagnation Stopping Criterion

This research takes a practical view that once an algorithm is no longer produc-
ing improved results regularly, it is preferable to halt its execution and better
employ the computational resources. This leads to using stagnation as a stop-
ping criterion where stagnation is a number of iterations in which no solution
improvement is observed. Stagnation offers the reproducibility of a combinatorial
count while incorporating problem difficulty into the algorithm’s halting. It also
avoids the use of CPU time as a stopping criterion. This has been criticised as
‘not acceptable for a scientific paper’ [6] on the grounds of reproducibility. This
research uses 250 iterations. Of course, results are dependent on the criterion
chosen. This is the nature of experiments with heuristics.

3.2 Responses

Performance measures must reflect the conflicting heuristic goals of high solution
quality and low time to solution. Johnson advocates reporting running times.

a key reason for using approximation algorithms is to trade quality of
solution for reduced running time, and readers may legitimately want to
know how that tradeoff works out for the algorithms in question. [6]

This research specifically addressed this trade-off. The response that reflects
time-to-solution is the CPU time from the beginning of an algorithm run to
the time that the algorithm has stagnated and halted, not to the time the best
solution was found. We were careful not to include time to calculate and write
output that is not essential to the algorithm’s functioning.

It is an open question as to which solution quality response is the more ap-
propriate. This research uses relative error, defined as the difference between
the algorithm solution and the optimal solution expressed as a percentage of the
optimal solution. Alternatives such as Adjusted Differential Approximation [7]
also exist. The optimal was calculated using the Concorde solver [8].

3.3 Problem Instances

Since this research includes problem size and standard deviation of problem
edge cost as factors, we need a method to produce instances with controllable
levels of these characteristics. Publicly available benchmark libraries do not have
the breadth to provide such instances. For reproducibility, we used our own
Java implementation of the 8th DIMACS Implementation Challenge [9] problem
generator. This was informally verified to produce the same instances as the
original C code. Our generator was then modified to draw its edge costs from a
log-normal distribution where the standard deviation of the resulting edge costs
could be controlled while their mean was fixed at 100. This was inspired by
previous investigations on problem difficulty for an exact TSP algorithm [10]
and verified for the MMAS heuristic [11].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

52 E. Ridge and D. Kudenko

3.4 Experiment Design

The reported research used a Minimum Run Resolution V Face-Centred Com-
posite design with 8 replicates of the factorial and axial points and 6 centre
points. This requires a total of 1452 runs. A 5% statistical significance level was
used throughout.

Table 1 lists the 12 experiment factors and their high and low factorial levels.
Factor levels were chosen using two criteria. If the factor has bounds on its
values (for example, 0 ≤ q0 ≤ 1.0) then these bounds were chosen as the high
and low factor levels. Alternatively, if the factor has no bounds (for example,
0 < α ≤ ∞), we chose high and low values that incorporate values typically seen
in the literature [3,1].

Table 1. Experiment factors and high (+) and low (-) factor levels. N denotes a
numeric factor and C a categoric factor.

Factor Meaning Type (-) (+)

A Alpha Exponentiates the pheromone term. N 1.00 13.00

B Beta Exponentiates the distance heuristic term. N 1.00 13.00

C Ants Number of ants expressed as % of problem size. N 1.00 110.00

D NNAnts Length of candidate list as % of problem size. N 1.00 20.00

E q0 Exploration, exploitation threshold. N 0.01 0.99

F Rho Phermone evaporation parameter. N 0.01 0.99

G Branch The branching factor threshold below which a
trail reinitialisation occurs.

N 0.5 2.0

H Iters The iteration threshold after which a trail reini-
tialisation occurs.

N 2 8

J StDev Standard deviation of edges in the TSP N 10.00 70.00

K Size Number of cities in the TSP instance. N 300 500

L Best so far
Freq

The iteration frequency with which best so far
ant is used for pheromone updates.

N 2 40

M Ant
Place-
ment

Whether ants are scattered randomly across the
graph or at the single randomly chosen city.

C random same

The RSM combinations of factors J and K required 9 problem instances (in-
cluding the centre points). Since experiments were conducted on 5 similar (but
not identical) machines, it was necessary to randomize the run order to deal
with unknown and uncontrollable nuisance factors [12]. Such factors might in-
clude hardware differences and operating system differences that could impact
on the CPU time response.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Tuning the Performance of the MMAS Heuristic 53

4 Model Fitting

41 outliers (3% of the data) were removed5 to make the data amenable to sta-
tistical analysis. Outliers were chosen using the usual diagnostics6. All responses
were transformed with a log10 transformation so that they then passed these
tests satisfactorily. However, the normal plots of the solution quality responses
exhibited more deviation from the line than previously encountered with another
Ant Colony algorithm [13]. This may be due to the restart nature of MMAS.
We pursued our analysis on the assumption that the ANOVA tests are robust
to this small deviation and verified our model as detailed in Section 5.

A fit analysis was conducted for each response to determine the highest order
statistically significant and unaliased model that could be fit to the responses.
A fit analysis begins by fitting the lowest order model, a linear model, to the
response. The next higher order model is then fitted to the same response. If
no additional terms from the higher order model are statistically significant, it
is not necessary to use the higher order model. This procedure continues until
the highest required order is found. The Minimum Run Resolution V design is
aliased for cubic models. This leaves a linear model, a 2 factor interaction model
and a quadratic model to be considered.

Based on these results, quadratic models were thus built for each response and
for each combination of the categoric factor of ant placement (Table 1). Space
restrictions prevent reproducing these models here. Before drawing conclusions
from the resulting response surface models for each response, we must confirm
the accuracy of the models.

5 Model Verification

A common approach in DOE [14] is to randomly sample points within the de-
sign space, run the actual process (in this case, the algorithm) at those points,
and compare the model’s predictions to the measurements from the randomly
generated algorithm runs. We use two criteria upon which our satisfaction with
the model (and thus confidence in its predictions) can be judged [13].

– Conservative: prefer models that provide consistently higher predictions
of relative error and higher solution time than those actually observed.

– Matching Trend: prefer models that match the trends in algorithm perfor-
mance. The prediction of the parameter combinations that give the best and

5 We acknowledge that some authors question the deletion of outliers since outliers do
represent real data and may reveal something about the process being studied.

6 Normal plot of internally studentised residuals; Plot of internally studentised
residuals against predicted value; Plot of internally studentised residuals against
run number; Plot of predicted versus actual values; Plot of externally studen-
tised residuals against run order; Plots of Leverage, DFFITS, DFBETAS and
Cook’s Distance. Please see NIST/SEMATECH e-Handbook of Statistical Meth-
ods (http://www.itl.nist.gov/div898/handbook/) for the meanings of these tests and
their interpretation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

54 E. Ridge and D. Kudenko

worst performance should match the actual parameter combinations that
give the observed best and worst performance.

We randomly generated 50 new experiment runs from combinations of factors
within the design space. For the randomly chosen combinations of problem char-
acteristics, completely new instances were generated. Each experiment run was
replicated 5 times. The measured responses were then compared to the mod-
els’ 95% prediction intervals. A prediction interval [14, p. 394] is simply a range
within which 95% of runs will fall. Figure 1 illustrates the results for the Time
and Relative Error responses on new instances.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

0 5 10 15 20 25 30 35 40 45 50

Treatment

R
el

at
iv

e
E

rr
or

Relative Error
95% PI low
95% PI high

(a) Relative Error

1

10

100

1000

10000

0 5 10 15 20 25 30 35 40 45 50

Treatment

Ti
m

e

Time
95% PI low
95% PI high

(b) Time

Fig. 1. Verification of RSM predictions

The model is a better predictor of Time than Relative Error because of the
small violations of the normality assumption in the Relative Error RSM. The
Relative Error RSM does satisfy our matching trend criterion.

6 Response Optimisation

We express the multiple responses in terms of a single desirability function [15]7.
For each response Yi (x), its desirability function di (Yi) maps values between 0
to 1 to the possible values of Yi (x). di (Yi) = 0 is completely undesirable and
di (Yi) = 1 is an ideal response. The overall desirability for all k responses is the
geometric mean of the individual desirabilities:

D =

(
k∏

1

di

) 1
k

The contributions of each response to the overall desirability can be weighted
to reflect user preferences. We use an equal weighting of quality and solution
7 http://www.itl.nist.gov/div898/handbook/pri/section5/pri5322.htm

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Tuning the Performance of the MMAS Heuristic 55

time. If the goal is to minimize a response (as in this research), the desirability
functions take the following form where Li, Ui and Ti are the lower bound, upper
bound and target values of the desired response.

di

(
Ŷi

)
=

⎧
⎪⎨

⎪⎩

1.0 if Ŷi (x) < T(
Ŷi(x)−Ui

Ti−Ui

)
if Ti ≤ Ŷi (x) ≤ Ui

0 if Ŷi (x) > Ui

Note that the fitted response value Ŷi is used in place of Yi. The Nelder-Mead
downhill simplex [16, p. 326] is used to maximise the desirability of all responses.
There are two important points to note about this optimisation:

– The two problem characteristics are factors in the model. If these were in-
cluded in the optimisation, the optimisation would select a small problem
size and low standard deviation. We therefore perform the optimizations
with the two characteristics fixed at three-level factorial combinations.

– Recall that we are forcing Alpha and Beta to only take on integer values
because of the expensive cost of non-integer exponentiation.

The results of these 9 optimizations are presented in Table 2 and a ranking of
the relative size of contribution of each factor to the RSM models is presented
in Table 3. It is important to consider both optimisations and rankings since a
factor that has a relative small effect on both responses can take on any value in
the optimisation. The following points should be noted.

– Alpha and Beta: these were generally kept low, except for large instances
with high cost standard deviation.

– Ants and Candidate List: a small number of ants with a short candidate
list was always preferred.

– The exploration/exploitation threshold: this is almost always at its
maximum. This means exploration is rarely used and instead ant movement
decisions are based on the best heuristic-product value.

– Pheromone evaporation: a higher value of ρ was preferred with increasing
size and standard deviation.

– Reinitialisation: a high threshold iterations was preferred on smaller in-
stances. A low branching factor threshold was always preferred. This is dif-
ferent from the value 1.0 that is usually fixed in the literature. Iteration
threshold was one of the smallest contributors to both responses, suggest-
ing that branching factor threshold is more important for determining trail
reinitialisations.

– Frequency of Best so far: Smaller instances with lower standard devia-
tion preferred a high frequency of use of best so far ant. Larger instances
with higher standard deviations preferred to use best so far less frequently.
However, this factor was one of the lower-ranking contributors to both re-
sponses (Table 3). This contradicts a result in the literature [1, p. 75].

– Ant Placement: this was one of the smallest contributors to both re-
sponses, suggesting that placement makes little difference to performance.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

56 E. Ridge and D. Kudenko

Table 2. Desirability optimisation results for Relative Error and Time on 9 combina-
tions of problem size and problem standard deviation

si
ze

S
tD

ev

al
p
h
a

b
et

a

an
ts

N
N

A
n
ts

q
0

rh
o

B
ra

n
ch

It
er

s

B
es

t
so

fa
rF

re
q

P
la

ce
m

en
t

T
im

e

R
el

E
rr

or
D

es
ir

ab
il
it
y

300 10 1 1 1 1 0.99 0.01 0.5 80 2 random 0.5 0.2 1.0

300 40 6 1 1 1.22 0.99 0.84 0.6 78 23 random 0.7 0.7 0.9

300 70 9 1 1 1 0.97 0.60 1 80 36 same 0.7 1.5 0.8

400 10 1 1 1 1 0.99 0.01 0.5 80 2 same 1.3 0.5 0.9

400 40 1 1 1.1 1.44 0.99 0.92 1.08 70 28 random 2.9 1.3 0.8

400 70 12 11 1 2.58 0.01 0.72 0.51 80 37 same 1.8 2.3 0.7

500 10 4 3 1 1 0.99 0.45 0.5 22 23 random 3.2 0.7 0.8

500 40 11 1 1 1.09 0.99 0.7 0.5 40 39 same 3.6 2.4 0.7

500 70 13 13 9.1 1.13 0.01 0.79 0.5 43 40 same 4.1 2.1 0.7

Table 3. Ranks of contribution size of 12 factors for Relative Error and Time responses.
The first two columns represent ranks within the main effects alone. The third and
fourth columns represent ranks within all model effects.

Time Rel Error Time Rel Error

A-alpha 5 12 9 63

B-beta 12 3 64 3

C-ants 1 6 1 13

D-Candidate list 3 4 3 5

E-q0 4 2 4 2

F-rho 8 9 23 51

G-Branch Threshold 6 5 10 8

H-Iters Threshold 10 10 62 60

J-problemStDev 7 1 17 1

K-problemSize 2 7 2 27

L-Best so far Freq 9 8 50 29

M-ant Placement 11 11 63 62

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Tuning the Performance of the MMAS Heuristic 57

7 Optimisation Verification

As with the predictions created with the RSMs, it is important to verify that the
optimal parameter settings are indeed optimal and by how much they improve
over other parameter settings. We randomly generate a set of TSP instances for
each of the 9 factorial instance characteristic combinations of Section 6. We then
run the MMAS algorithm with the optimal parameter settings on each of the
9 sets of instances. For each instance, we also run MMAS with 5 combinations
of randomly chosen parameter settings. All runs were replicated 3 times. We
should expect that for any instance, the optimal parameter settings produce
solutions with lower solution time and lower relative error than the 5 randomly
generated parameter settings. Figure 2 illustrates plots of the relative error and
time respectively for 5 instances.

Size 400 - St Dev 10

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5
Instance

R
el

at
iv

e
Er

ro
r (

%
)

RelErr_05
RelErr_04

(a) Relative Error

Size 400 - St Dev 10

0

50

100

150

200

250

0 1 2 3 4 5
Instance

Ti
m

e
(s

)

Time_05
Time_04

(b) Time

Fig. 2. Comparison of optimal (shaded) and non-optimal (unshaded) parameter results

While some non-optimal results are close to the optimal results for relative
error, none are lower than both relative error and time. A difficulty emerged
with all instances that had a high standard deviation of cost matrix. Figure 3
illustrates how the relative error using non-optimal parameters was occasionally
less than that using optimal parameters. However, the time results with optimal
parameters remained less than the non-optimal parameters.

8 Related Work

Factorial designs have been combined with a local search procedure to system-
atically find the best parameter values for a heuristic [17]. Unfortunately CALI-
BRA can only tune five algorithm parameters. Its restrictive linear assumption
precludes examining interactions between parameters. ACO algorithms require
more than 5 parameters and our fitting analysis shows that interactions in higher
order models are indeed important.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

58 E. Ridge and D. Kudenko

Size 500 - St Dev 70

0

5

10

15

20

25

0 1 2 3 4 5
Instance

R
el

at
iv

e
Er

ro
r (

%
)

Optimal
Non-optimal

(a) Relative Error

Size 500 - St Dev 70

0

100

200

300

400

500

600

0 1 2 3 4 5
Instance

Ti
m

e
(s

)

Optimal
Non-optimal

(b) Time

Fig. 3. Comparison of optimal (shaded) and non-optimal (unshaded) parameter results

Coy et al [18] systematically find good settings for 6 tuning parameters on
a set of Vehicle Routing Problems (VRP). Presented with a set of problems to
solve, their procedure finds high quality parameter settings for a small number of
problems in the problem set (the analysis set) and then combines these settings
to achieve a good set of parameters for the complete problem set. A fractional
factorial design is used to produce a response surface. The optimal parameter
settings of the RSMs from the analysis set are averaged to obtain the final
parameter settings for all problems in the set. Their method will perform poorly
if the representative test problems are not chosen correctly or if the problem
class is so broad that it requires very different parameter settings.

Park and Kim [19] used a non-linear response surface method to find para-
meter settings for a simulated annealing algorithm. Parsons and Johnson [20]
used a central composite design with embedded fractional factorial to build a
response surface and improve the performance of a genetic algorithm on a test
data set. Only two parameters were modeled.

Birattari [21] uses algorithms derived from a machine learning technique
known as racing to incrementally tune the parameters of several metaheuristics
including Max-Min Ant System for the TSP [3].The author does not pursue the
idea of a bi-objective optimisation of both time and quality. We have achieved
this with a stagnation stopping criterion and the use of desirability functions.

A recent attempt to tune an ACO algorithm addressed only 3 parameters
[22]. The authors then partitioned the three parameter ranges into 14, 9 and 11
values respectively. No reasoning was given for this granularity of partitioning
or why the number of partitions varied between parameters. Each ‘treatment’
was run 10 times with a 1000 iteration or optimum found stopping criterion on
a single 30 city instance. A single 30 city problem prevents an examination of
problem characteristics and the size of 30 is so small as to be trivial for any
algorithm. This resulted in 13,860 experiments. The approach was inefficient,
requiring almost 10 times as many runs as this paper to tune one quarter as
many parameters.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Tuning the Performance of the MMAS Heuristic 59

9 Contributions

The significance of the DOE techniques presented is as follows. We have been
able to efficiently model and verify the performance of a stochastic heuristic in
terms of two performance measures with a Minimum Run Resolution V Face-
Centred Composite Design. There are several important contributions for the
field of Ant Colony Optimization and the broader field of heuristics.

– Efficient Experiment Designs. Minimum Run Resolution V designs offer
huge savings in experimental runs over full factorials and over fractional
factorials. This saving overcomes the challenge of designing heuristics with
a large number of degrees of freedom.

– Simultaneous Analysis of Conflicting Responses. Solution quality and
solution time are critical to all heuristic performance analyses. Desirability
functions permit simultaneously analysing and optimising these conflicting
responses while assigning relative weights to each.

– Optimal Parameter Recommendations. A Nelder-Mead numerical op-
timisation of desirability allowed us to find parameter settings that optimise
MMAS performance for different combinations of problem characteristics.
The accuracy of these optimisations was demonstrated with an independent
set of experiments. Several results were particularly noteworthy.

• Higher values of alpha and beta are appropriate on some occasions.
• A maximum exploration/exploitation threshold is almost always recom-

mended, effectively ruling out the use of exploration in the algorithm.
This is an unexpected result that merits further investigation.

• Smaller instances with lower standard deviation preferred a high fre-
quency of use of best so far ant. Larger instances with higher standard
deviations preferred to use best so far less frequently. This contradicts a
related result in the literature [1, p. 75].

• A low threshold branching factor for trail reinitialisation was recom-
mended. This was different from the fixed value of 1.0 used in the litera-
ture. We conclude that branching factor threshold should be considered
as a tuning parameter.

A more detailed description of the DOE methodology and its adaptation to
performance analysis of heuristics is available in the literature [23].

References

1. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge, MA
(2004)

2. Czitrom, V.: One-Factor-at-a-Time versus Designed Experiments. The American
Statistician 53(2), 126–131 (1999)

3. Stützle, T., Hoos, H.H.: Max-Min Ant System. Future Generation Computer Sys-
tems 16(8), 889–914 (2000)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

60 E. Ridge and D. Kudenko

4. Myers, R.H., Montgomery, D.C.: Response Surface Methodology. Process and
Product Optimization Using Designed Experiments. John Wiley and Sons Inc.
Chichester (1995)

5. Oehlert, G., Whitcomb, P.: Small, Efficient, Equireplicated Resolution V Fractions
of 2K designs and their Application to Central Composite Designs. In: Proceedings
of 46th Fall Technical Conference. American Statistical Association (2002)

6. Johnson, D.S.: A Theoretician’s Guide to the Experimental Analysis of Algorithms.
In: Proceedings of the Fifth and Sixth DIMACS Implementation Challenges (2002)

7. Zlochin, M., Dorigo, M.: Model based search for combinatorial optimization: a
comparative study. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-
Villacañas, J.-L., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature -
PPSN VII. LNCS, vol. 2439, Springer, Heidelberg (2002)

8. Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Implementing the Dantzig-
Fulkerson-Johnson algorithm for large traveling salesman problems. Mathematical
Programming Series B 97(1-2), 91–153 (2003)

9. Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP.
In: The Traveling Salesman Problem and Its Variations, Kluwer Academic Pub-
lishers, Dordrecht (2002)

10. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the Really Hard Problems
Are. In: Proceedings of the Twelfth International Joint Conference on Artificial
Intelligence, vol. 1, pp. 331–337. Morgan Kaufman, USA (1991)

11. Ridge, E., Kudenko, D.: An Analysis of Problem Difficulty for a Class of Optimi-
sation Heuristics. In: Proceedings of EvoCOP ’07. LNCS, vol. 4446, pp. 198–209.
Springer, Heidelberg (2007)

12. Ostle, B.: Statistics in Research, 2nd edn. Iowa State University Press (1963)
13. Ridge, E., Kudenko, D.: Analyzing Heuristic Performance with Response Surface

Models: Prediction, Optimization and Robustness. In: Proceedings of the Genetic
and Evolutionary Computation Conference, ACM Press, New York (2007)

14. Montgomery, D.C.: Design and Analysis of Experiments, 6th edn. Wiley (2005)
15. Derringer, G., Suich, R.: Simultaneous Optimization of Several Response Variables.

Journal of Quality Technology 12(4), 214–219 (1980)
16. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes

in Pascal: the art of scientific computing. Cambridge University Press (1989)
17. Adenso-Dıaz, B., Laguna, M.: Fine-Tuning of Algorithms Using Fractional Exper-

imental Designs and Local Search. Operations Research 54(1), 99–114 (2006)
18. Coy, S., Golden, B., Runger, G., Wasil, E.: Using Experimental Design to Find

Effective Parameter Settings for Heuristics. Journal of Heuristics 7(1), 77–97 (2001)
19. Park, M.W., Kim, Y.D.: A systematic procedure for setting parameters in simu-

lated annealing algorithms. Computers and Operations Research 25(3) (1998)
20. Parsons, R., Johnson, M.: A Case Study in Experimental Design Applied to Genetic

Algorithms with Applications to DNA Sequence Assembly. American Journal of
Mathematical and Management Sciences 17(3), 369–396 (1997)

21. Birattari, M.: The Problem of Tuning Metaheuristics. Phd, Université Libre de
Bruxelles (2006)

22. Gaertner, D., Clark, K.L.: On Optimal Parameters for Ant Colony Optimization
Algorithms. In: Proceedings of the 2005 International Conference on Artificial In-
telligence, vol. 1, pp. 83–89. CSREA Press (2005)

23. Ridge, E., Kudenko, D.: Sequential Experiment Designs for Screening and Tuning
Parameters of Stochastic Heuristics. In: Workshop on Empirical Methods for the
Analysis of Algorithms, Reykjavik, Iceland. pp. 27–34 (2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Comparing Variants of MMAS ACO Algorithms
on Pseudo-Boolean Functions�

Frank Neumann1, Dirk Sudholt2, and Carsten Witt2

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
2 LS 2, FB Informatik, Universität Dortmund, Dortmund, Germany
fne@mpi-inf.mpg.de,{sudholt,cw01}@ls2.cs.uni-dortmund.de

Abstract. Recently, the first rigorous runtime analyses of ACO algo-
rithms have been presented. These results concentrate on variants of the
MAX-MIN ant system by Stützle and Hoos and consider their runtime
on simple pseudo-Boolean functions such as OneMax and LeadingOnes.
Interestingly, it turns out that a variant called 1-ANT is very sensitive
to the choice of the evaporation factor while a recent technical report by
Gutjahr and Sebastiani suggests partly opposite results for their variant
called MMAS. In this paper, we elaborate on the differences between the
two ACO algorithms, generalize the techniques by Gutjahr and Sebas-
tiani and show improved results.

1 Introduction

Randomized search heuristics have been shown to be good problem solvers with
various application domains. Two prominent examples belonging to this class
of algorithms are Evolutionary Algorithms (EAs) and Ant Colony Optimization
(ACO) [1]. Especially ACO algorithms have been shown to be very successful
for solving problems from combinatorial optimization. Indeed, the first prob-
lem where an ACO algorithm has been applied was the Traveling Salesperson
Problem (TSP) [2] which is one of the most studied combinatorial problems in
computer science.

In contrast to many successful applications, theory lags far behind the practi-
cal evidence of all randomized search heuristics. In particular in the case of ACO
algorithms, the analysis of such algorithms with respect to their runtime behav-
ior has been started only recently. The analysis of randomized search heuristics
(e. g., [3]) is carried out as in the classical algorithm community and makes use
of several strong methods for the analysis of randomized algorithms [4], [5].

Regarding ACO, only convergence results [6] were known until 2006 and an-
alyzing the runtime of ACO algorithms has been pointed out as a challenging
task in [7]. First steps into analyzing the runtime of ACO algorithms have been
made by Gutjahr [8], and, independently, the first theorems on the runtime of
a simple ACO algorithm called 1-ANT have been obtained at the same time by
� D. S. and C. W. were supported by the Deutsche Forschungsgemeinschaft as a part

of the Collaborative Research Center “Computational Intelligence” (SFB 531).

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2007, LNCS 4638, pp. 61–75, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

62 F. Neumann, D. Sudholt, and C. Witt

Neumann and Witt [9]. Later on this algorithm has been further investigated
for the optimization of some well-known pseudo-Boolean functions [10]. A con-
clusion from these investigations is that the 1-ANT is very sensitive w. r. t. the
choice of the evaporation factor ρ. Increasing the value of ρ only by a small
amount may lead to a phase transition and turn an exponential runtime into
a polynomial one. In contrast to this, a simple ACO algorithm called MMASbs
has been investigated in a recent report by Gutjahr and Sebastiani [11] where
this phase transition does not occur. Gutjahr [12] conjectures that the different
behavior of MMASbs and 1-ANT is due to their slightly different replacement
strategies: MMASbs accepts only strict improvements while 1-ANT accepts also
equal-valued solutions. We will however show that the replacement strategies do
not explain the existence of the phase transition. Instead, the reason is that the
1-ANT only updates pheromone values when the best-so-far solution is replaced.

This motivates us to study MMAS variants where the pheromone values are
updated in each iteration. First, we consider the MMAS algorithm by Gutjahr
and Sebastiani [11] and show improved and extended results. In particular, we
make use of the method called fitness-based partitions which is well-known from
the analysis of evolutionary algorithms. Additionally, we study plateau functions
and argue why the replacement strategy of the 1-ANT combined with persistent
pheromone updates is more natural. Investigating the function Needle, we show
that this can reduce the runtime of the ACO algorithm significantly.

The outline of the paper is as follows. In Section 2, we introduce the algorithms
that are subject of our investigations. The behavior of these algorithms on well-
known plateau functions is considered in Section 3, and Section 4 deals with
analyses for some popular unimodal functions. We finish with some conclusions.

2 Algorithms

We consider the runtime behavior of two ACO algorithms. Solutions for a given
problem, in this paper bit strings x ∈ {0, 1}n for pseudo-boolean functions
f : {0, 1}n → R, are constructed by a random walk on a so-called construction
graph C = (V, E), which is a directed graph with a designated start vertex s ∈ V
and pheromone values τ : E → R on the edges.

Algorithm 1 (Construct(C, τ))
1.) v:=s, mark v as visited.
2.) Let Nv be the set of non-visited successors of v in C. If Nv �= ∅:

a.) Choose successor w ∈ Nv with probability τ(v,w)/
∑

(v,u)|u∈Nv
τ(v,u).

b.) Mark w as visited, set v := w and go to 2.).
3.) Return the solution x and the path P (x) constructed by this procedure.

We examine the construction graph given in Figure 1, which is known in the
literature as Chain [13]. For bit strings of length n, the graph has 3n+1 vertices
and 4n edges. The decision whether a bit xi, 1 ≤ i ≤ n, is set to 1 is made at node
v3(i−1). If edge (v3(i−1), v3(i−1)+1) (called 1-edge) is chosen, xi is set to 1 in the
constructed solution. Otherwise the corresponding 0-edge is taken, and xi = 0

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Comparing Variants of MMAS ACO Algorithms 63

xnv3(n−1)

v3(n−1)+1

v3n

v3(n−1)+2

v0 x1

v2

v1

v6

x3 v9

v3

v5

v4

x2 . . .

v8

v7

Fig. 1. Construction graph for pseudo-Boolean optimization

holds. After this decision has been made, there is only one single edge which can
be traversed in the next step. In case that (v3(i−1), v3(i−1)+1) has been chosen,
the next edge is (v3(i−1)+1, v3i), and otherwise the edge (v3(i−1)+2, v3i) will be
traversed. Hence, these edges have no influence on the constructed solution and
we can assume τ(v3(i−1),v3(i−1)+1) = τ(v3(i−1)+1,v3i) and τ(v3(i−1),v3(i−1)+2) =
τ(v3(i−1)+2,v3i) for 1 ≤ i ≤ n. We ensure that

∑
(u,·)∈E τ(u,·) = 1 for u = v3i,

0 ≤ i ≤ n − 1, and
∑

(·,v) τ(·,v) = 1 for v = v3i, 1 ≤ i ≤ n. Let pi = Prob(xi = 1)
be the probability of setting the bit xi to 1 in the next constructed solution. Due
to our setting pi = τ(3(i−1),3(i−1)+1) and 1−pi = τ(3(i−1),3(i−1)+2) holds, i. e., the
pheromone values correspond directly to the probabilities for choosing the bits
in the constructed solution. In addition, following the MAX-MIN ant system by
Stützle and Hoos [14], we restrict each τ(u,v) to the interval [1/n, 1 − 1/n] such
that every solution always has a positive probability of being chosen.

Depending on whether edge (u, v) is contained in the path P (x) of the con-
structed solution x, the pheromone values are updated to τ ′ in the update pro-
cedure as follows:

τ ′
(u,v) =

{
min

{
(1 − ρ) · τ(u,v) + ρ, 1 − 1/n

}
if (u, v) ∈ P (x)

max
{
(1 − ρ) · τ(u,v), 1/n

}
otherwise.

The following algorithm, which we call MMAS*, has been defined by Gutjahr
and Sebastiani [11] under the original name MMASbs. Here, in each iteration
the best solution obtained during the run of the algorithm, called best-so-far
solution, is rewarded. Another property of the model is that the best-so-far
solution may not switch to another one of the same fitness.

Algorithm 2 (MMAS*)
1.) Set τ(u,v) = 1/2 for all (u, v) ∈ A.
2.) Compute a solution x using Construct(C, τ).
3.) Update the pheromone values and set x∗ := x.
4.) Compute a solution x using Construct(C, τ).
5.) If f(x) > f(x∗), set x∗ := x
6.) Update the pheromone values with respect to x∗.
7.) Go to 4.).

Using this model, it is much easier to adapt results from the well-known
evolutionary algorithm called (1+1) EA than in the case of the 1-ANT, i. e., the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

64 F. Neumann, D. Sudholt, and C. Witt

MAX-MIN ACO variant examined by Doerr, Neumann, Sudholt and Witt [9],
[10]. In particular, many results using the technique of fitness-based partitions
may be transferred to MMAS* by taking into account an additional amount
of time until the best solution has been rewarded such that an improvement
is obtained with a large enough probability (see below for details). This is only
possible since pheromone updates occur in each iteration. In contrast to this, the
1-ANT only updates the pheromone values if the best-so-far solution is replaced
by solutions of at least the same fitness, i. e., steps 5.) and 6.) in the above
description are substituted by

If f(x) ≥ f(x∗), set x∗ := x and update the pheromone values w. r. t. x∗.

This update strategy may lead to a large discrepancy between the expected
value of the next solution and the currently best one and is the main reason for
exponential runtimes of the 1-ANT even for really simple functions and relatively
large values of ρ (see [9], [10]).

If the value of ρ is chosen large enough in MMAS*, the pheromone borders 1/n
or 1−1/n are touched for every bit of the rewarded solution. In this case, MMAS*
equals the algorithm called (1+1) EA*, which is known from the analysis of
evolutionary algorithms [15].

Algorithm 3 ((1+1) EA*)
1. Choose an initial solution x∗ ∈ {0, 1}n uniformly at random.
2. Repeat

a) Create x by flipping each bit of x∗ with probability 1/n.
b) If f(x) > f(x∗), set x∗ := x.

As already pointed out in [15], the (1+1) EA* has difficulties with simple
plateaus of constant fitness as no search points of the same fitness as the so
far best one are accepted. Accepting solutions with equal fitness enables the
algorithm to explore plateaus by random walks. Therefore, it seems more natural
to replace search points by new solutions that are at least as good. In the case
of evolutionary algorithms, this leads to the well-known (1+1) EA which differs
from the (1+1) EA* only in step 2.b) of the algorithm. Similarly, we derive
MMAS from MMAS* using this acceptance condition. It should be noted that
MMAS is not just a variant of the 1-ANT with different pheromone values since
it still updates pheromones in each iteration.

Algorithm 4 (Acceptance condition for the (1+1) EA and MMAS)
– If f(x) ≥ f(x∗), set x∗ := x.

In the remainder of the paper, we will examine the behavior of MMAS com-
pared to MMAS*. For the analysis of an algorithm, we consider the number of
solutions that are constructed by the algorithm until an optimal solution has
been obtained for the first time. This is called the optimization time of the
algorithm and is a well-accepted measure in the analysis of evolutionary algo-
rithms since each point of time corresponds to a fitness evaluation. Often the
expectation of this value is considered and called the expected optimization time.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Comparing Variants of MMAS ACO Algorithms 65

Before we derive the first results, it is helpful to introduce the quantity that
informally has been mentioned above. Suppose there is a phase such that MMAS
or MMAS* never replaces the best-so-far solution x∗ in step 5.) of the algorithm.
This implies that the best-so-far solution is rewarded again and again until all
pheromone values have reached their upper or lower borders corresponding to
the setting of the bits in x∗. The advantage is that probabilities of improvements
can be estimated more easily as soon as x∗ has been “frozen in pheromone” this
way. Gutjahr and Sebastiani [11] call the time for this to happen t∗ and bound it
from above by − ln(n − 1)/ln(1 − ρ). This holds since a pheromone value which
is only increased during t steps is at least min{1 − 1/n, 1 − (1 − 1/n)(1 − ρ)t}
after the iterations, pessimistically assuming the worst-case initialization 1/n for
this value and 1 − 1/n for the complementary pheromone value. In the present
paper, we use ln(1−ρ) ≤ −ρ for 0 ≤ ρ ≤ 1 and arrive at the handy upper bound

t∗ ≤ ln n

ρ
. (1)

3 Plateau Functions

Plateaus are regions in the search space where all search points have the same
fitness. Consider a function f : {0, 1}n → R and assume that the number of
different objective values for that function is D. Then there are at least 2n/D
search points with the same objective vector. Often, the number of different
objective values for a given function is polynomially bounded. This implies an
exponential number of solutions with the same objective value. In the extreme
case, we end up with the function Needle where only one single solution has
objective value 1 and the remaining ones get value 0. The function is defined as

Needle(x) :=

{
1 if x = xOPT,

0 otherwise,

where xOPT is the unique global optimum. Gutjahr and Sebastiani [11] compare
MMAS* and (1+1) EA* w. r. t. their runtime behavior. For suitable values of ρ
that are exponentially small in n, the MMAS* has expected optimization time
O(cn), c ≥ 2 an appropriate constant, and beats the (1+1) EA*. The reason
is that MMAS* behaves nearly as random search on the search space while
the initial solution of the (1+1) EA* has Hamming distance n to the optimal
one with probability 2−n. To obtain from such a solution an optimal one, all n
bits have to flip, which has expected waiting time nn, leading in summary to an
expected optimization time Ω((n/2)n). In the following, we show a similar result
for MMAS* if ρ decreases only polynomially with the problem dimension n.

Theorem 1. Choosing ρ = 1/poly(n), the optimization time of MMAS* on
Needle is at least (n/6)n with probability 1 − e−Ω(n).

Proof. Let x be the first solution constructed by MMAS* and denote by xOPT
the optimal one. As it is chosen uniformly at random from the search space,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

66 F. Neumann, D. Sudholt, and C. Witt

the expected number of positions where x and xOPT differ is n/2 and there are
at least n/3 such positions with probability 1 − e−Ω(n) using Chernoff bounds.
At these positions the values of x are rewarded as long as the optimal solution
has not been obtained. This implies that the probability to obtain the optimal
solution in the next step is at most 2−n/3. After at most t∗ ≤ (ln n)/ρ (see
Inequality (1)) iterations, the pheromone values of x have touched their borders
provided xOPT has not been obtained. The probability of having obtained xOPT
within a phase of t∗ steps is at most t∗ · 2−n/3 = e−Ω(n). Hence, the probability
to produce a solution that touches its pheromone borders and differs from xOPT
in at least n/3 positions before producing xOPT is 1 − e−Ω(n). In this case, the
expected number of steps to produce xOPT is (n/3)n and the probability of
having reached this goal within (n/6)n steps is at most 2−n. �	

The probability to choose an initial solution x that differs from xOPT by n
positions is 2−n, and in this case, after all n bits have reached their corresponding
pheromone borders, the probability to create xOPT equals n−n. Using the ideas of
Theorem 1 the following corollary can be proved which asymptotically matches
the lower bound for the (1+1) EA* given in [11].

Corollary 1. Choosing ρ = 1/poly(n), the expected optimization time of
MMAS* on Needle is Ω((n/2)n).

It is well known that the (1+1) EA that accepts each new solution has expected
optimization time 2n+o(n) on Needle (see [16], [17]) even though it samples
with high probability in the Hamming neighborhood of the latest solution. On
the other hand, MMAS* will have a much larger optimization time unless ρ is
superpolynomially small (Theorem 1). In the following, we will show that MMAS
is competitive with the (1+1) EA even for large ρ-values.

Theorem 2. Choosing ρ = Ω(1), the expected optimization time of MMAS on
Needle is 2n+o(n).

Proof. By the symmetry of the construction procedure and uniform initializa-
tion, we w. l. o. g. assume that the needle xOPT equals the all-ones string 1n. As
in [17], we study the process on the constant function f(x) = 0. The first hitting
times for the needle are the same on Needle and the constant function while
the invariant limit distribution for the constant function is easier to study since
it is uniform over the search space.

The proof idea is to study a kind of “mixing time” t(n) after which each bit
is independently set to 1 with a probability of at least 1/2 − 1/n regardless of
the initial pheromone value on its 1-edge. This implies that the probability of
creating the needle is at least (1/2−1/n)n ≥ e−32−n (for n large enough) in some
step after at most t(n) iterations. We successively consider independent phases of
length t(n) until the needle is sampled. Estimating by a geometrically distributed
waiting time, the expected optimization time is bounded by O(t(n) · 2n). The
theorem follows if we can show that t(n) = poly(n).

To bound t(n), we note that the limit distribution of each pheromone value is
symmetric with expectation 1/2, hence, each bit is set to 1 with probability 1/2 in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Comparing Variants of MMAS ACO Algorithms 67

the limit. We consider a coupling of two independent copies of the Markov chain
for the pheromone values of a bit such that we start the chain from two different
states. The task is to bound the coupling time c(n), defined as the first point of
time where both chains meet in the same border state 1/n or 1 − 1/n (taking a
supremum over any two different initial states). If we know that E(c(n)) is finite,
then Markov’s inequality yields that c(n) ≤ nE(c(n)) with probability at least
1 − 1/n, and the coupling lemma [5] implies that the total variation distance to
the limit distribution is at most 1/n at time nE(c(n)). Hence, the bit is set to 1
with probability at least 1/2 − 1/n then and we can use t(n) := nE(c(n)).

It remains to prove E(c(n)) = poly(n) for the considered coupling. Since
ρ = Ω(1), the pheromone value of a bit reaches one of its borders in t∗ = O(log n)
(Inequality (1)) iterations with probability at least

∏t∗

t=0(1−(1−1/n)(1−ρ)t) =
Ω(1/n) (using the same estimations for pheromone values as in [11])). Hence,
with probability 1/2, one chain reaches a border in O(n log n) iterations. A
pheromone value that is at a border does not change within O(n log n) itera-
tions with probability at least (1 − 1/n)O(n log n) = 1/poly(n). In this phase, the
pheromone value of the other chain reaches this border with probability Ω(1).
Repeating independent phases, we have bounded E(c(n)) by a polynomial. �	

The function Needle requires an exponential optimization time for each al-
gorithm that has been considered. Often plateaus are much smaller, and ran-
domized search heuristics have a good chance to leave them within a polynomial
number of steps. Gutjahr and Sebastiani [11] consider the function NH-OneMax

that consists of the Needle-function on k = log n bits and the function One-

Max on n − k bits, which can only be optimized if the needle has been found
on the needle part. The function is defined as

NH-OneMax(x) =

(
k∏

i=1

xi

) (
n∑

i=k+1

xi

)
.

Using the ideas in the proof of Theorem 1 and taking into account the logarithmic
size of the needle of NH-OneMax, MMAS* with polylogarithmically small ρ
finds the needle only after an expected superpolynomial number 2Ω(log2 n) of
steps, and the following theorem can be shown.

Theorem 3. Choosing ρ = 1/polylog(n), the expected optimization time of
MMAS* on NH-OneMax is 2Ω(log2 n).

As the needle part only consists of log n bits, MMAS can find the needle after
an expected polynomial number of steps (Theorem 2). After this goal has been
achieved, the unimodal function OneMax has to be optimized. Together with
our investigations for unimodal functions carried out in the next section (in
particular the upper bound from Theorem 6), the following result can be proved.

Theorem 4. Choosing ρ = Ω(1), the expected optimization time of MMAS on
NH-OneMax is polynomial.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

68 F. Neumann, D. Sudholt, and C. Witt

4 Unimodal Functions, OneMax and LeadingOnes

Gutjahr and Sebastiani [11] extend the well-known fitness-level method, also
called the method of f -based partitions, from the analysis of evolutionary algo-
rithms (see, e. g., [18]) to their considered MMAS-algorithm, i. e., the MMAS*.
Let A1, . . . , Am be an f -based partition w. r. t. the pseudo-Boolean fitness func-
tion f : {0, 1}n → R, i. e., for any pair of search points x ∈ Ai, y ∈ Aj where j > i
it holds f(x) < f(y), and Am contains only optimal search points. Moreover, let
si, 1 ≤ i ≤ m − 1, be a lower bound on the probability of the (1+1) EA (or, in
this case equivalently, the (1+1) EA*) leaving set Ai. Using the quantity t∗, the
expected runtime of MMAS* on f is bounded from above by

m−1∑

i=1

(
t∗ +

1
s(i)

)

(which is a special case of Eq. (13) in [11]). Since t∗ ≤ (ln n)/ρ, we obtain the
more concrete bound

m ln n

ρ
+

m−1∑

i=1

1
s(i)

, (2)

in which the right-hand sum is exactly the upper bound obtained w. r. t. the
(1+1) EA and (1+1) EA*. To prove the bound (2) for MMAS*, it is essential that
equally good solutions are rejected (see [11] for a formal derivation). Informally
speaking: for each fitness-level, MMAS* in the worst case has to wait until all
pheromone values have their obtained upper and lower borders such that the
best-so-far solution is “frozen in pheromone” and the situation is like in the
(1+1) EA* with the best-so-far solution as the current search point.

In the technical report by Gutjahr and Sebastiani [11], the proposed fitness-
level method is basically applied in the context of the unimodal functions One-

Max and LeadingOnes. Our aim is to show how the method can be applied
to arbitrary unimodal functions both w. r. t. MMAS and MMAS*. Moreover, we
generalize the upper bounds obtained in [11] for the example functions One-

Max and LeadingOnes and, for the first time, we show a lower bound on
the expected optimization time of MMAS* on LeadingOnes. This allows us to
conclude that the fitness-level method can provide almost tight upper bounds.

4.1 General Results

Unimodal functions are a well-studied class of fitness functions in the literature
on evolutionary computation (e. g., [3]). For the sake of completeness, we repeat
the definition of unimodality for pseudo-Boolean fitness functions.

Definition 1. A function f : {0, 1}n → R is called unimodal if there exists for
each non-optimal search point x a Hamming neighbor x′ where f(x′) > f(x).

Unimodal functions are often believed to be easy to optimize. This holds if the set
of different fitness values is not too large. In the following, we consider unimodal

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Comparing Variants of MMAS ACO Algorithms 69

functions attaining D different fitness values. Such a function is optimized by the
(1+1) EA and (1+1) EA* in expected time O(nD). This bound is transferred
to MMAS* by the following theorem.

Theorem 5. The expected optimization time of MMAS* on a unimodal function
attaining D different fitness values is O((n + log n/ρ)D).

Proof. By the introductory argument, we only have to set up an appropriate
fitness-based partition. We choose the D sets of preimages of different fitness
values. By the unimodality, there is for each current search point x a better
Hamming neighbor x′ of x in a higher fitness-level set. The probability of the
(1+1) EA (or, equivalently, MMAS* with all pheromone values at a border) to
produce x′ in the next step is Ω(1/n). By (2), this completes the proof. �	

MMAS differs from MMAS* by accepting solutions that are at least as good
as the best solution obtained during the optimization process. Hence, the best-
so-far solution may switch among several solutions with the same fitness value,
and, on every fitness-level, pheromone values may perform random walks be-
tween the upper and lower pheromone borders. In comparison to MMAS*, this
behavior makes it harder to bound the expected time for an improvement, and
the following upper bound is worse than the upper bound for MMAS*.

Theorem 6. The expected optimization time of MMAS on a unimodal function
attaining D different fitness values is O((n2(log n)/ρ)D).

Proof. We only need to show that the expected time for an improvement is
O(n2(log n)/ρ). The probability that MMAS produces within O((log n)/ρ) steps
a solution being at least as good as (not necessarily better than) the best-so-far
solution x∗ is Ω(1) since after at most (ln n)/ρ steps without exchanging x∗

all pheromone values have touched their bounds and then the probability of
rediscovering x∗ is Ω(1). We now show that the conditional probability of an
improvement if x∗ is replaced is Ω(1/n2).

Let x1, . . . , xm be an enumeration of all solutions with fitness values equal
to the best-so-far fitness value. Due to unimodality, each xi, 1 ≤ i ≤ m, has
some better Hamming neighbor yi; however, the yi need not be disjoint. Let
X and Y denote the event to generate some xi or some yi, resp., in the next
step. In the worst case y1, . . . , ym are the only possible improvements, hence the
theorem follows if we can show Prob(Y | X ∪ Y) ≥ 1/n2 which is equivalent to
Prob(Y) ≥ Prob(X)/(n2 − 1).

If p(xi) is the probability to construct xi, we have p(xi)/p(yi) ≤ (1 − 1
n)/ 1

n =
n − 1 as the constructions only differ in one bit. Each yi may appear up to n
times in the sequence y1, . . . , ym, hence Prob(Y) ≥ 1

n

∑m
i=1 Prob(yi) and

Prob(X) =
m∑

i=1

p(xi) ≤ (n − 1) ·
m∑

i=1

p(yi) ≤ n(n − 1) · Prob(Y).

Therefore, Prob(Y) ≥ Prob(X)/(n2 − 1) follows. �	

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

70 F. Neumann, D. Sudholt, and C. Witt

Theorems 5 and 6 show that the expected optimization times of both MMAS
and MMAS* are polynomial for all unimodal functions as long as D = poly(n)
and ρ = 1/poly(n). Since MMAS and 1-ANT do not differ in their replacement
strategy, this disproves the conjecture in [12] that accepting equally good so-
lutions leads to the phase transition behavior from polynomial to exponential
runtimes of the 1-ANT on the following example functions.

4.2 OneMax

The probably most often studied example function in the literature on evolu-
tionary computation is the unimodal function OneMax(x) = x1 + · · · + xn.
In the runtime analysis of the 1-ANT on OneMax by Neumann and Witt [9],
it is shown that there exists a threshold value for ρ (in our notation basically
ρ = O(1/nε) for some small constant ε > 0) below which no polynomial runtime
is possible. As argued above, due to Theorems 5 and 6, this phase transition
can occur neither with MMAS* nor with MMAS. We are interested in improved
upper bounds for the special case of MMAS* on OneMax. The following the-
orem has already been proven for some values of ρ in [11]. We however obtain
polynomial upper bounds for all ρ bounded by some inverse polynomial.

Theorem 7. The expected optimization time of MMAS* on OneMax is
bounded from above by O((n log n)/ρ).

Proof. The proof is an application of the above-described fitness-level method
with respect to the partition Ai = {x | f(x) = i}, 0 ≤ i ≤ n. Using the
arguments in [11]—or, equivalently, the upper bound on the expected runtime
of the (1+1) EA on OneMax [3]—we obtain that the term

∑m−1
i=0 1/(s(i)) is

O(n log n). Using (2), the upper bound O((n log n)/ρ) follows. �	

The bound is never better than Θ(n log n), which is the expected runtime of
the (1+1) EA and (1+1) EA* on OneMax. At the moment, we are not able to
show a matching lower bound Ω(n log n) on the expected optimization time of
MMAS*; however, we can show that the expected optimization time is growing
with respect to 1/ρ as the upper bound suggests. We state our result in a more
general framework: as known from the considerations by Droste, Jansen and
Wegener [3], the mutation probability 1/n of the (1+1) EA is optimal for many
functions including OneMax. One argument is that the probability mass has
to be quite concentrated around the best-so-far solution to allow the (1+1) EA
to rediscover the last accepted solution with good probability. Given a mutation
probability of α(n), this probability of rediscovery equals (1 − α(n))n, which
converges to zero unless α(n) = O(1/n). The following lemma exploits the last
observation for a general lower bound on the expected optimization time of both
MMAS and MMAS*.

Theorem 8. Let f : {0, 1}n → R be a function with a unique global optimum.
Choosing ρ = 1/poly(n), the expected optimization time of MMAS and MMAS*
on f is Ω((log n)/ρ).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Comparing Variants of MMAS ACO Algorithms 71

Proof. W. l. o. g., 1n is the unique optimum. If, for each bit, the success proba-
bility (defined as the probability of creating a one) is bounded from above by
1− 1/

√
n then the solution 1n is created with only exponentially small probabil-

ity (1−1/
√

n)n ≤ e−
√

n. Using the uniform initialization and pheromone update
formula of MMAS and MMAS*, the success probability of a bit after t steps
is bounded from above by 1 − (1 − ρ)t/2. Hence, all success probabilities are
bounded as desired within t = (ln(n/4))/(2ρ) steps since

1 − 1
2
(1 − ρ)t ≤ 1 − e−(ln n−ln 4)/2

2
= 1 − 1√

n
.

Since ρ = 1/poly(n) and, therefore t = poly(n), the total probability of creating
the optimum in t steps is still at most te−

√
n = e−Ω(

√
n), implying the lower

bound on the expected optimization time. �	

Hence, the expected optimization time of MMAS* on OneMax is bounded by
Ω((log n)/ρ), too. It is an open problem to show matching upper and lower
bounds. We conjecture that the lower bound for OneMax is far from optimal
and that Ω(n/ρ + n log n) holds.

4.3 LeadingOnes

Another prominent unimodal example function, proposed by Rudolph [19], is

LeadingOnes(x) =
n∑

i=1

i∏

j=1

xj ,

whose function value equals the number of leading ones in the considered bit
string x. A non-optimal solution may always be improved by appending a single
one to the leading ones. LeadingOnes differs from OneMax in the essential
way that the assignment of the bits after the leading ones do not contribute to
the function value. This implies that bits at the beginning of the bit string have a
stronger influence on the function value than bits at the end. Because of this, the
methods developed by Neumann and Witt [9] cannot be used for analyzing the
1-ANT on LeadingOnes as these methods make particular use of the fact that
all bits contribute equally to the function value. In a follow-up paper by Doerr,
Neumann, Sudholt and Witt [10], the 1-ANT is studied on LeadingOnes by
different techniques and it is shown that a similar phase transition behavior as
on OneMax exists: for ρ = o(1/log n) (again using the notation of the present
paper), the expected optimization time of the 1-ANT is superpolynomially large
whereas it is polynomial for ρ = Ω(1/log n) and even only O(n2) for ρ = Ω(1).
We already know that this phase transition cannot occur with MMAS* and
MMAS on LeadingOnes. The following theorem, special cases of which are
contained in [11], shows a specific upper bound for MMAS*.

Theorem 9. The expected optimization time of MMAS* on LeadingOnes is
bounded from above by O((n log n)/ρ + n2).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

72 F. Neumann, D. Sudholt, and C. Witt

Proof. The theorem follows again by the bound (2). We use the same fitness-
based partition as in the proof of Theorem 7 and the expected optimization time
O(n2) of the (1+1) EA on LeadingOnes [3]. �	

It is interesting that an almost tight lower bound can be derived. The following
theorem shows that the expected optimization time of MMAS* is never better
than Ω(n2). The proof is lengthy, however, for the case of large ρ, one essential
idea is easy to grasp: already in the early stages of the optimization process,
many, more precisely Ω(n), pheromone values on 1-edges reach their lower bor-
ders 1/n, and the corresponding bits are set to 0. To “flip” such a bit, events
of probability 1/n are necessary. This can be transformed into the lower bound
Ω(n2) on the expected optimization time.

Theorem 10. Choosing ρ = 1/poly(n), the expected optimization time of
MMAS* on LeadingOnes is bounded from below by Ω(n/ρ + n2).

Proof. We first show the lower bound Ω(n/ρ) on the expected optimization time.
Afterwards, this bound is used to prove the second bound Ω(n2). Throughout
the proof, we consider only runs of polynomial length since by the assumption
ρ = 1/poly(n) the lower bounds to show are both polynomial. This allows us to
ignore events with exponentially small probabilities.

For the first part, we use the observation by Doerr et al. [10] on the pheromone
values outside the block of leadings ones. If the best-so-far LeadingOnes-value
equals k, the pheromone values corresponding to the bits k+2, . . . , n have never
contributed to the LO-value implying that each of these bits is unbiasedly set
to 1 with probability exactly 1/2 in the next constructed solution. Note that
these pheromone values are not necessarily martingales, however, the probability
distribution of such a pheromone value is symmetric with expectation 1/2. Hence
we distinguish two states for a bit: if it is right of the leftmost zero in the best-
so-far solution, its expected pheromone values on 1- and 0-edges equal 1/2; if it
is left of the leftmost zero, the pheromone value of its 1-edges are monotonically
increasing in each iteration until the border 1 − 1/n is reached. We call the first
state the random state and the second one the increasing state.

While all bits in the block n/4 + 1, . . . , n/2 are in random state, the proba-
bility of obtaining a LeadingOnes-value of at least n/2 is bounded from above
by 2−Ω(n). Hence, with probability 1 − 2−Ω(n), the LeadingOnes-value is in
the interval [n/4, n/2] at some point of time. The randomness of the bits af-
ter the leftmost zero allows us to apply the standard free-rider arguments by
Droste, Jansen and Wegener [3]. Hence, with probability 1 − 2−Ω(n), at least
n/12 improvements of the LeadingOnes-value have occurred when it has en-
tered the interval [n/4+1, n/2]. This already completes the first part of the proof
if ρ = Ω(1). In the following, we therefore study the case ρ = o(1). Assume for
some arbitrarily slowly increasing function α(n) = ω(1) that only n/(α(n)2ρ)
iterations have happened until the first n/12 improvements are done. Then it
must hold (by the pigeon-hole principle) that at most n/α(n) times, the number
of iterations between two consecutive improvements is large, which is defined as:
not bounded by O(1/(α(n)ρ)). Furthermore, by another pigeon-hole-principle

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Comparing Variants of MMAS ACO Algorithms 73

argument, there must be at least n/α(n) independent so-called fast phases de-
fined as follows: each fast phase consists of at least r := �α(n)/24 consecutive
improvements between which the number of iterations is never large, i. e., each
time bounded by O(1/(α(n)ρ)). (For a proof, consider a fixed subdivision of
n/12 improvements into blocks of r consecutive improvements and show that at
most half of these blocks can contain a large number of iterations between some
two consecutive improvements.) In the following, we will show that a fast phase
has probability o(1). This contradicts (up to failure probabilities of 2−Ω(n/α(n)))
the assumption we have at least Ω(n/α(n)) fast phases, hence the number of
iterations for the first n/12 improvements cannot be bounded by n/(α(n)2ρ).
Since α(n) can be made arbitrarily slowly increasing, we obtain the lower bound
Ω(n/ρ) on the expected optimization time.

Consider the event that a fast phase containing r improvements is sufficient
to set at least r bits into the increasing state (the phase is called successful
then). In the beginning, all these bits are in random state. Hence, with a failure
probability at most 2−Ω(r), less than r/4 pheromone values on the corresponding
1-edges (in the following called success probabilities) are at most 1/2. We assume
r/4 bits with this property and estimate the probability of setting all these bits
to 1 simultaneously in at least one improving step until the end of the phase
(which is necessary for the phase to be successful). The success probability of a
bit with initial pheromone value 1/2 is still at most pt := 1 − (1 − ρ)t/2 if it has
been only in increasing state for t steps. The total number of iterations in the
phase is O(1/ρ) by the definition of a fast phase. Hence, by the end of the phase,
all considered success probabilities are at most 1 − (1 − ρ)O(1/ρ)/2 = 1 − Ω(1).
The probability of a single improving step setting the r/4 bits to 1 is therefore at
most (1 − Ω(1))r/4 = 2−Ω(r). Adding up over all r improving steps and taking
into account the above failure probability, the probability of the phase being
successful is at most r2−Ω(r) + 2−Ω(r) = 2−Ω(α(n)) = o(1) as suggested.

Having proved that the expected number of steps for n/12 improvements is
Ω(n/ρ), we conclude that there is a constant c > 0 such that the time between
two improvements is at least c/ρ with probability at least 1/2. Otherwise Cher-
noff bounds would (up to exponentially small failure probabilities) contradict
the bound Ω(n/ρ). We exploit this to show that with high probability, a linear
number of bits in random state reaches the lower border 1/n on the success
probability during the optimization process. This will prove the second lower
bound Ω(n2) on the expected optimization time.

Consider a bit in random state and a phase of t∗ ≤ (ln n)/ρ iterations. We are
interested in the event that the bit is set to zero throughout all improvements of
the phase, which implies that the success probability is 1/n until the end of the
phase (the phase is finished prematurely if the border 1/n is reached in less than
t∗ steps). This event has probability Ω(1) for the following reasons: let p0 be the
initial probability of setting the bit to zero and assume p0 ≥ 1/2 (which holds
with probability at least 1/2). After t steps of the phase, this probability is at
least pt := 1− (1−ρ)t/2 if the bit has only been set to zero in the improvements
in the phase. If the time between two improvements (and, therefore, exchanges

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

74 F. Neumann, D. Sudholt, and C. Witt

of the best-so-far solution) is always bounded from below by c/ρ, the considered
event has probability at least

∏∞
t=1 ptc/ρ. Using 1 − x ≤ e−x for x ∈ R and

1 − x ≥ e−2x for x ≤ 1/2, this term can be bounded from below by

∞∏

t=1

(
1 − (1 − ρ)tc/ρ

2

)
≥

∞∏

t=1

(
1 − e−ct

2

)
≥

∞∏

t=1

exp(e−ct)

= exp

(∞∑

t=1

e−ct

)
= exp

(
e−c

1 − e−c

)
= Ω(1).

That the phase is of the desired length only with probability 1/2 is no problem
either since we can bound the probability of setting the bit to 0 after a short
phase by the probability in the beginning of the phase and argue like in the proof
of Theorem 2 in [10]. The event of a short phase corresponds to the occurrence of
a “free-rider” and the number of short phases is geometrically distributed with
success probability at most 1/2. Hence, using the same calculations as in the
mentioned proof, the probability of the desired event is at least

∏∞
t=1

ptc/ρ

2−ptc/ρ
≥

∏∞
t=1

ptc/ρ

2 = Ω(1) as claimed.
Using the observation from the last paragraph, it follows that with probability

1 − 2−Ω(n), at least Ω(n) bits in random state have reached success probability
1/n by the time the LeadingOnes-value enters the interval [n/4, n/2]. The only
problem might be that these success probabilities might increase again. However,
in each of the remaining improvements, we distinguish the events whether it is
relevant for an improvement to set such a bit to 1 or not. If the bit is not relevant
since it is still right of the leftmost zero after the improvement, its success prob-
ability does not change with probability 1 − 1/n. Hence, in O(n) improvements
there are in expectation still Ω(n) success probabilities equal to 1/n left. Since,
with at least constant probability, Ω(n) improvements are necessary, the lower
bound Ω(n2) on the expected optimization time follows. �	

In the proof, we had to carefully look at the random bits and to study the
structure of the optimization process. It seems to be even harder to prove a
corresponding lower bound for MMAS since accepting equally good solutions
implies that more than n exchanges of the best-so-far solution can happen. Also
additional ideas are required to transfer the proof of Theorem 10 and to obtain
an improved lower bound for MMAS* on OneMax.

5 Conclusions

The rigorous runtime analysis of ACO algorithms is a challenging task where the
first results have been obtained only recently. In this paper, we have considered
an ACO algorithm called MMAS for which some results based on the method of
fitness-based partitions have been obtained. Previous results on this algorithm
by Gutjahr and Sebastiani have been extended and improved and compared
to our earlier findings for the 1-ANT. In particular, we have considered some

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Comparing Variants of MMAS ACO Algorithms 75

unimodal functions such as OneMax and LeadingOnes and proved upper and
lower bounds. Furthermore, we have argued why it is necessary to replace search
points by other ones that have the same fitness and shown that this improves
the runtime on the well-known plateau function Needle.

Acknowledgements. The authors thank the reviewers for their helpful comments.

References

1. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
2. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: An autocatalytic optimizing

process. Technical Report 91-016 Revised, Politecnico di Milano (1991)
3. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary

algorithm. Theor. Comput. Sci. 276, 51–81 (2002)
4. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambr. Univ. Press, Cam-

bridge (1995)
5. Mitzenmacher, M., Upfal, E.: Probability and Computing – Randomized Algo-

rithms and Probabilistic Analysis. Cambr. Univ. Press, Cambridge (2005)
6. Gutjahr, W.J.: ACO algorithms with guaranteed convergence to the optimal solu-

tion. Inform. Process. Lett. 82, 145–153 (2002)
7. Dorigo, M., Blum, C.: Ant colony optimization theory: A survey. Theor. Comput.

Sci. 344, 243–278 (2005)
8. Gutjahr, W.J.: First steps to the runtime complexity analysis of Ant Colony Op-

timization. Comput. Oper. Res (to appear)
9. Neumann, F., Witt, C.: Runtime analysis of a simple ant colony optimization

algorithm. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 618–627. Springer,
Heidelberg (2006) extended version to appear in Algorithmica

10. Doerr, B., Neumann, F., Sudholt, D., Witt, C.: On the runtime analysis of the 1-
ANT ACO algorithm. In: Proc. of GECCO ’07, ACM Press, New York (to appear)

11. Gutjahr, W.J., Sebastiani, G.: Runtime analysis of ant colony optimization. Tech-
nical report, Mathematics department, ”Sapienza” Univ. of Rome, 2007/03 (2007)

12. Gutjahr, W.J.: Mathematical runtime analysis of ACO algorithms: Survey on an
emerging issue. Swarm Intelligence (to appear)

13. Gutjahr, W.J.: On the finite-time dynamics of ant colony optimization. Methodol.
Comput. Appli. Probab. 8, 105–133 (2006)

14. Stützle, T., Hoos, H.H.: MAX-MIN ant system. J. Future Gener. Comput. Syst. 16,
889–914 (2000)

15. Jansen, T., Wegener, I.: Evolutionary algorithms - how to cope with plateaus of
constant fitness and when to reject strings of the same fitness. IEEE Trans. Evolut.
Comput. 5(6), 589–599 (2001)

16. Garnier, J., Kallel, L., Schoenauer, M.: Rigorous hitting times for binary mutations.
Evolut. Comput. 7, 173–203 (1999)

17. Wegener, I., Witt, C.: On the optimization of monotone polynomials by simple
randomized search heuristics. Combin. Probab. Comput. 14, 225–247 (2005)

18. Wegener, I.: Methods for the analysis of evolutionary algorithms on pseudo-boolean
functions. In: Sarker, R., Yao, X., Mohammadian, M. (eds.) Evolutionary Opti-
mization, pp. 349–369. Kluwer, Dordrecht (2002)

19. Rudolph, G.: Convergence Properties of Evolutionary Algorithms. Kovač (1997)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

EasyAnalyzer: An Object-Oriented Framework
for the Experimental Analysis

of Stochastic Local Search Algorithms

Luca Di Gaspero1, Andrea Roli2, and Andrea Schaerf1

1 DIEGM, University of Udine, Udine, Italy
2 DEIS, University of Bologna, Cesena, Italy

{l.digaspero,schaerf}@uniud.it, andrea.roli@unibo.it

Abstract. One of the aspects of applying software engineering to Sto-
chastic Local Search (SLS) is the principled analysis of the features of the
problem instances and the behavior of SLS algorithms, which —because
of their stochastic nature— might need sophisticated statistical tools.

In this paper we describe EasyAnalyzer, an object-oriented frame-
work for the experimental analysis of SLS algorithms, developed in the
C++ language. EasyAnalyzer integrates withEasyLocal++, a frame-
work for the development of SLS algorithms, in order to provide a unified
development and analysis environment. Moreover, the tool has been de-
signed so that it can be easily interfaced also with SLS solvers developed
using other languages/tools and/or with command-line executables.

We show an example of the use of EasyAnalyzer applied to the
analysis of SLS algorithms for the k-GraphColoring problem.

1 Introduction

In recent years, much research effort has focused on the proposals of envi-
ronments specifically designed to help the formulation and implementation of
Stochastic Local Search (SLS) algorithms by means of specification languages
and/or software tools, such as Localizer and its evolutions [3,1,2], HotFrame

[4], ParadisEO [5], iOpt [6], EasyLocal++ [7,8], and others.
Unfortunately, as pointed out by Hoos and Stützle [9] in [9, Epilogue, pp.

533–534], the same amount of effort has not been oriented in the development
of software tools for the experimental analyses of the algorithms.

To this regard, [10] proposes a suite of tools for visualizing the behavior of SLS
algorithms, which is particularly tailored for MDF (Metaheuristics Development
Framework) [11]. However, to the best of our knowledge, we can claim that at
present there is no widely-accepted comprehensive environment.

In this paper we try to overcome this lack by proposing an object-oriented
framework, called EasyAnalyzer, for the analysis of SLS algorithms. EasyAn-

alyzer is a software tool that belongs to the family of Object-Oriented (O-O)
frameworks. A framework is a special kind of software library, which consists
of a hierarchy of abstract classes and is characterized by the inverse control

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2007, LNCS 4638, pp. 76–90, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

EasyAnalyzer: An Object-Oriented Framework 77

mechanism for the communication with the user code (also known as the Hol-
lywood Principle: “Don’t call us, we’ll call you”). That is, the functions of the
framework call the user-defined ones and not the other way round as it usually
happens with software libraries. The framework thus provides the full control
logic and, in order to use it, the user is required to supply the problem specific
details by means of some standardized interfaces.

Our work is founded on Design Patterns [12], which are abstract structures of
classes, commonly present in O-O applications and frameworks, that have been
precisely identified and classified. The use of patterns allows us to address many
design and implementation issues in a more principled way.

EasyAnalyzer provides a family of off-the-shelf analysis methods to be cou-
pled to local search solvers developed using one of the tools mentioned above
or written from scratch. For example, it performs various kinds of search space
analysis in order to understand, study, and tune the behavior of SLS algorithms.
The properties of the search space are a crucial factor of SLS algorithm perfor-
mance [13,9]. Such characteristics are usually studied by implementing ad hoc
programs, tailored both to the specific algorithm and to the problem at hand.
EasyAnalyzer makes it possible to abstract from algorithm implementation
and problem details and to design general search space analyzers.

EasyAnalyzer is specifically designed to blend in a natural way with Easy-

Local++, the local search framework developed by two of these authors [8,7],
which has recently been entirely redesigned to allow for more complex search
strategies. Nevertheless, it is capable of interacting with other software environ-
ments and with stand-alone applications.

This is an ongoing work, and some modules still have to be implemented.
However, the general architecture, the core modules, and the interface with Ea-

syLocal++ and with command-line executables are completed and stable.
The paper is organized as follows. In Section 2 we show the architecture of

EasyAnalyzer and its main modules. In Section 3 we go in details in the
implementation of the core modules. In Section 4 we show some examples of use
based on the classic k-GraphColoring problem. In Section 5 we draw some
conclusions and discuss future work.

2 The Architecture of EasyAnalyzer

The conceptual architecture of EasyAnalyzer is presented in Figure 1 and it
is split in three main abstraction layers. Each layer of the hierarchy relies on the
services supplied by lower levels and provides a set of more abstract operations.

Analysis system: it comprises the core classes of EasyAnalyzer. It is the
most abstract level and contains the control logic of the different types of
analysis provided in the system. The code for the analyses is completely
abstract from the problem at hand and also from the actual implementa-
tion of the solver. The classes of this layer delegate implementation- and/or
problem-related tasks to the set of lower level classes, which comply with a
predefined service interface (described in the following).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

78 L. Di Gaspero, A. Roli, and A. Schaerf

Fig. 1. EasyAnalyzer layered architecture

Solver interfaces: this layer can be split into two components: the top one
is the interface that represents an abstract solver subsystem, which simply
prescribes the set of services that should be provided by a concrete solver in
order to be used in the analyses. The coupling of the analysis system with
the implementation is dealt with by this component.

The lower component is the concrete implementation of the interface for
a set of SLS software development environments. Notice that in the case
of EasyLocal++, this component is not present since EasyAnalyzer

directly integrates within the development framework classes. The reason is
that in the design of the solver interface we reuse many choices already made
for EasyLocal++ thus allowing immediate integration.

For other software environments, instead, the solver subsystem com-
ponent must be explicitly provided. Depending on the capabilities of the
software environment, these interfaces can be implemented in a problem-
independent manner (so that they can be directly reused across all applica-
tions) or it might require to be customized for the specific problem. Although
in the second case the user could be required to write some additional code,
our design limits this effort since our interfaces requires just a minimal set
of functionalities.

Solver environment: it consists of the (possibly generic) SLS software de-
velopment environment plus the problem-specific implementation. In some
cases these two components coincide, as for solvers that do not make use of
any software environment. In this case the interaction with the solver can
make use of a simple command-line interface.

At present, we have implemented the direct integration with EasyLocal++

and to the command-line interface1 by means of a set of generic classes (i.e., C++
classes that make use of templates that should be instantiated with the concrete
command-line options). We plan to implement also the interfaces to other freely
available software environments like, e.g., ParadisEO [5] and Comet [2].

1 In Figure 1 the implemented components are denoted by solid lines while dotted
lines denote components only designed.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

EasyAnalyzer: An Object-Oriented Framework 79

Fig. 2. UML class diagram of the analysis system

In the following subsections we present more in detail the problem-independent
layers of the EasyAnalyzer architecture and we give some example of code.

2.1 The Analysis System

The main classes of the analysis system are shown in Figure 2 using the UML
2.0 notation [14]. As in Figure 1 we report in solid lines the fully implemented
components (dotted lines for the forthcoming ones).

Let us start our presentation with the EasyAnalyzer class. This class relies
on the Factory method pattern to set up the analysis system on the basis of a
given solver interface. Notice that the interface is specified as a template para-
meter, so that we are able to write the generic code for instantiating the analysis
system regardless which of the concrete implementations is provided. Further-
more, the EasyAnalyzer class provides a standardized command-line interface for
the interaction with the analysis system. This task is accomplished by manag-
ing a command-line interpreter object that is directly configured by the analysis
techniques. That is, each analysis technique “posts” the syntax of the command-
line arguments needed by the interpreter object that is in charge of parsing the
command line and dispatching the actual parameters to the right component.

The main component of the analysis system is the Analyzer class, which relies
on the Strategy pattern. This component represents the interface of an analy-
sis technique, whose actual “strategy” will be implemented in the analyze()

method defined in the concrete subclasses. The report(ostream) method is used
to provide on an output stream a human- and/or machine-readable report of the
analysis, depending on the parameters issued on the command line.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

80 L. Di Gaspero, A. Roli, and A. Schaerf

The Analyzer class is then specialized on the basis of the SLS features that
are subject of the analysis into the following three families:

SearchSpaceAnalyzer: these analyzers deal with features that are related to the
search space. Several crucial properties of the search space can be analyzed
with these modules, such as landscape characteristics and states reachability.

RunTimeBehaviorAnalyzer: their aim is to analyze the run-time behavior of
the solvers. Analyses belonging to this family are, e.g., run-time distribution
(RTD), run-length distribution (RLD) and solution quality distribution (SQD).

MultiSolverAnalyzer: they handle and evaluate groups of solvers. For exam-
ple the Race analyzer tries to find-out the statistically best configuration
of a solver among a set of candidate configurations by applying a racing
procedure [15].

The interface with the services provided by the analysis system is established
with the AbstractSolverInterface abstract class, which relies on the Façade
pattern whose aim is to provides a simple interface to a complex subsystem.
This class and the underlying classes and objects responsibilities are going to be
detailed in the following subsection.

2.2 The Solver Interface

The architecture of the solver interface is shown in the top part of Figure 3. The
derived classes on the bottom are the implementation of this interface in the
EasyLocal++ framework.

The SolverInterface class acts as a unified entry point (the Façade) and as
the coordinator of a set of underlying classes (Abstract Factory and Factory
method patterns). Indeed, according to the EasyLocal++ design, we identify
a set of software components that take care of different responsibilities in a
SLS algorithm and we define a set of adapter classes for them. These adapters
have a straight implementation in EasyLocal++ (Figure 3, bottom part), and
are those components that instead must be implemented for interfacing with
different software environments. The components we consider are the following:

StateManagerAdapter: it is responsible for all operations on the states of the
search space that are independent of the definition of the neighborhood. In
particular, it provides methods to enumerate and to sample the search space,
and it allows us to evaluate the cost function value on a given state. The
component relies on StateDescriptors for the exchange of information with
the analysis system (in order to avoid the overhead of sending a complex
space representation).

NeighborhoodExplorerAdapter: it handles all the features concerning the ex-
ploration of the neighborhood. It allows to enumerate and to sample the
neighbors of a given state, and to evaluate the cost function.

SolverAdapter: it encapsulates a single SLS algorithm or a complex solution
strategy that involves more than one single SLS technique. Its methods allow
us to perform a full solution run (either starting from a random initial state

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

EasyAnalyzer: An Object-Oriented Framework 81

Fig. 3. UML class diagram of the solver interface

or from a state given as input), possibly storing all the trajectory from the
initial state to the final one. This component returns also information on the
running time and on the state costs.

2.3 How to Use EasyAnalyzer

In order to use EasyAnalyzer it is only needed to instantiate the Solver tem-
plate of the EasyAnalyzer class with the proper implementation of the Abstract

SolverInterface. As for the EasyLocal++ solver, this interface is already
provided with the framework, whilst for the command-line interaction the func-
tionalities must be implemented by the user in the stand-alone executable.

The various analyses can be executed by issuing command line options to
the EasyAnalyzer executable. For example, -ptenum requires a position type
analysis to be performed (with a complete enumeration of the search space).
Additional parameters, depending on the analysis at hand, can be required and
they have to be specified on the command line as well. The different types of
analysis and an explanation of the options available can be obtained by issuing
a -help command.

3 Implementation of EasyAnalyzer

In this section we describe two representative examples of the analyzers currently
implemented, with emphasis on the design process that relies on the abstractions
provided by the Solver interfaces.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

82 L. Di Gaspero, A. Roli, and A. Schaerf

3.1 SearchSpaceAnalyzer

In this section we illustrate the design and implementation of an analyzer for
Basins of attraction (BOA), useful for studying the reachability of solutions.
Given a deterministic algorithm, the basin of attraction B(s) of a search space
state s (usually a minimum), is defined as the set of states that, taken as initial
states, give origin to trajectories that end at point s. The quantity rBOA(s),
defined as the ratio between the cardinality of B(s) and the search space size
(assumed finite), is an estimation of the reachability of state s. If the initial
solution is chosen at random, the probability of finding a global optimum s∗ is
exactly equal to rBOA(s∗). Therefore, the higher is this ratio, the higher is the
probability of success of the algorithm. The estimation of basins of attraction
characteristics can help in the a posteriori analysis of local search performance,
to provide explanations for the observed behavior. Moreover, it can also be useful
for the a priori study of the most suitable models of a problem, for instance for
comparing advantages and disadvantages of models that incorporate symmetry-
breaking or implied constraints [16]. In section 4.2, we will discuss an example
of a typical application of this kind of a posteriori analysis.

The development of a specific analyzer starts from the implementation of
the interface SearchSpaceAnalyzer that declares the basic methods analyze(),
for the actual analysis to be performed, and report(), defining the output of
the analysis. The main goal of a BOA analyzer is to find the size of all, or
a sample of, the local and global minima basins of attraction, corresponding to
the execution of a given (deterministic) algorithm A. Therefore, a BOA analyzer
must be fed with problem instance and search algorithm and its task is to scan
the search space for finding attractors and their basins. The procedure of search
space scanning can be implemented in several ways, and it could primarily be
either an exhaustive enumeration or a sampling. Attractors and their basins can
be then computed by running algorithm A from every possible initial state s,
returned by the scan method, till the corresponding attractor.2 The main parts
of the analyze() method for the BOA class are as detailed in Listing 1.1.

Listing 1.1. The analyze() method for the BOA class

void BOA::analyze()
{ BOAData data;
initializeAnalysis(); // loads instance and solver
StateDescriptor state = scanSpace();
while (state.isValid()) // while there are feasible states
{ const Result& result = solver.run(state);
updateBOAInfo(result.getStateDescriptor());
state = scanSpace();

}
}

2 There are also other ways for performing this task; for instance, the Reverse hill-
climbing technique [17]. Moreover, in this discussion, we only consider the case of
deterministic algorithms.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

EasyAnalyzer: An Object-Oriented Framework 83

The BOA analyzer is designed through the Template Method pattern, that
enables the designer to define a class that delegates the implementation of some
methods to the subclasses. In this case, the implementation of the method
scanSpace() is left to the subclasses, so as to make it possible to implement a vari-
ety of different search space scanning procedures, such as enumeration (BOAEnum,
Listing 1.2) and uniform sampling (BOASample, Listing 1.3). These methods rely
on StateManagerAdapter for enumeration and random sampling of the search
space, respectively.

Listing 1.2. BOAEnum::scanSpace()

StateDescriptor
BOAEnum::scanSpace()

{
if(!stateManager.finished())
return

stateManager.nextState();
else return NON_VALID_STATE;
}

Listing 1.3. BOASample::scanSpace()

StateDescriptor
BOASample::scanSpace()

{ if (numberOfSamples <
maxNumberOfSamples)

return
stateManager.randomState();

else return NON_VALID_STATE;
}

We remark that the implementation of these BOA analyzers is very simple
and compact, as it is totally independent from the problem specific part of the
software, thanks to the intermediate software level of Solver interfaces. With
few lines of code it is possible to implement other BOA analyzers, for instance
by using samplings based on non-uniform distributions, in order to bias the
sampling in areas containing global minima.

In an analogous way, it is possible to implement analyzers which can scan
the search space and classify each state as (strict) local minimum/maximum,
plateau, slope or ledge as a function of the cost of its neighbors. According to [9],
we call this kind of classification position type analysis. The class PositionType

delegates the subclasses PTEnum and PTSample for the implementation of the
method scanSpace(), that relies on the class NeighborhoodExploreAdapter for enu-
merating the neighborhoods. The method scanSpace() can enumerate or sample
the search space. The current implementation includes enumeration and uniform
sampling, while the sampling through different distributions or along trajectories
is part of ongoing work.

3.2 MultiSolverAnalyzer

In many cases, the people working on SLS algorithms face the problem of eval-
uating the behavior of a family of solvers (usually on a set of a benchmark
instances) rather than analyzing a single SLS algorithm. For example one could
be interested in comparing a set of SLS solvers to determine whether one or
more of them perform better than the others. Another common case is to con-
sider different settings for the same solver as a mean for tuning the parameters

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

84 L. Di Gaspero, A. Roli, and A. Schaerf

of the solver. In both cases statistical procedures are needed to assess the choice
of the “winning” solver in a sound way.

To deal with this situation, we decided to design also a set of analyzers that
manage a set of SLS solver and whose aim is to perform comparative analysis.
As in the previous example, we rely on the abstraction levels of EasyAnalyzer

to design general multi-solver analyzers.
We have developed the set of classes that implement the Race approach by

Birattari et al. [15]. This procedure aims at selecting the parameters of a SLS
algorithm by testing each candidate configuration on a set of trials. The config-
urations that perform poorly are discarded and not tested anymore as soon as
sufficient statistical evidence against them is collected.

This way, only the statistically proven good configurations continue the race,
and the overall number of tests needed to find the best configuration (or the
equally good configurations) is limited. Each trial is performed on the same
randomly chosen problem instance for all the remaining configurations and a
statistical test is used to assess which of them are discarded.

In order to perform the analysis, the user must specify a set of solvers that
are going to be compared in the Race and a set of instances on which the solvers
will be run.

We present here the method analyze() of the class Race (Listing 1.4). The
method works in a loop that evaluates the behavior of the configurations on an
instance and collects statistical evidence about them. We would like to remark
that our implementation follows the lines of the R package [18].

Listing 1.4. The analyze() method for the class Race

void Race::analyze()
{ initializeAnalysis(); // loads instances, solvers and sets up the set

of aliveSolvers
replicate = 0;
do
{ performReplicate (instances[replicate % instances.size()], replicate);
if (replicate >= min_replicates) // the test is performed only after

a minimum number of replicates
{ TestResult res = statisticalTest (seq(0, replicate), aliveSolvers,

conf_level);
updateAliveSolvers(res.survived);
statistics[replicate] = res.statistic;
p_values[replicate] = res.p_value;

}
replicate++;

}
while (aliveSolvers.size() > 1 && replicate < max_replicates);

}

The evaluation of the candidate configurations is performed by calling the
method performReplicate (whose code is reported in Listing 1.5). This method

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

EasyAnalyzer: An Object-Oriented Framework 85

relies on the solver interfaces to load the current input instance and to invoke the
different solvers configurations (only for the solvers that still survive the race).

Listing 1.5. The performReplicate() method of the class Race

void Race::performReplicate(const std::string& instance, unsigned int i)
{ sub.loadInput(instance);
for (unsigned int j = 0; j < solvers.size(); j++)
if (aliveSolvers.find(j) != aliveSolvers.end())
{ Result r = solvers[j]->run();
outcomes[i][j] = r.getCostValue();

}
}

The class Race makes use of the Template Method pattern: the selection algo-
rithm relies on the implementation of the abstract statisticalTest() method,
which is implemented in two different sub-classes for the Student’s t-test (TRace)
and the Friedman’s test (FRace).

Notice that the presented method makes use of the solvers just as black-boxes
that from an initial state lead to a final solution. Indeed, the only information
exploited in the analysis is the final solution cost and the running time. More
sophisticated analyses can also exploit the trajectory from the initial state to
the solution. For example this information can be used to compare the quality
of SLS solvers throughout the evolution of the search (as suggested by Taillard
[19]). This will be subject of future work.

4 A Case Study: The k-GraphColoring Problem

We show an example of the use of EasyAnalyzer by providing some analyses
on a family of solvers for the k-GraphColoring problem. Our aim is not to
say the ultimate word on the problem, but rather to exemplify the use of the
analyzers presented so far.

4.1 k-GraphColoring Problem Statement and Local Search
Encoding

Here we briefly recall the statement of the k-GraphColoring problem, which
is the decision variant of the well-known min-GraphColoring problem [20,
Prob. GT4, page 191].

Given an undirected graph G = (V, E) and a set of k integer colors, the
problem is to assign to each node v ∈ V a color value c(v) such that adjacent
nodes are assigned different colors.

As the search space of our SLS algorithms we consider the set of all possible
colorings of the graph, including the infeasible ones; the number of conflicting
nodes is the cost function value in a given state. The neighborhood relation

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

86 L. Di Gaspero, A. Roli, and A. Schaerf

Table 1. Position types in 3-colorable graphs

Position type Edge Density
0.010 0.016 0.020 0.026 0.030 0.036 0.040

Strict local min < 10−4 0% 0% 0% 0% 0% 0%
Local min 0% 0% 0% 0% 0% 0% 0.46%
Interior plateau 0% 0% 0% 0% 0% 0% 92.74%
Ledge 84.42% 99.42% 99.80% 100% 100% 100% 0.10%
Slope 0.77% 0.02% < 10−4 0% 0% 0% 0%
Local max 14.77% 0.56% 0.20% < 10−4 < 10−4 0% 6.70%
Strict local max 0.04% 0% 0% 0% 0% 0% 0%

is defined by the color change of one conflicting node (as in [21]) and for the
tabu search prohibition mechanism, we consider a move inverse of another one if
both moves insist on the same node and the first move tries to restore the color
changed by the second one.

4.2 Search Space Analysis

To illustrate the use of EasyAnalyzer for studying properties of the search
space, we consider a simple analysis on 3-colorable graphs. Instances were gen-
erated with Culberson’s graph generator [22] with equi-partition and indepen-
dent random edge assignment options and with varying edge density, so as to
span the spectrum from lowly to highly constrained instances. All instances are
guaranteed to be 3-colorable and have 100 nodes.

One of the main search space features of interest is the number of local min-
ima and, more generally, the type of search space positions. Table 1 reports a
summary of the position type analysis out of 106 random samples.

As discussed in [9], for random landscapes we would expect a position type
distribution characterized by a majority of least constrained positions, such as
ledges, which are states with neighbors with higher, lower and equal cost. From
the results in Table 1, we observe that ledge is the predominant type. The most
constrained instance (density = 0.04) shows instead a very different landscape
structure, as it is dominated by plateaus. This difference with respect to the
other instances is particularly apparent also when local search is used to solve
these instances. Figure 4 shows the box-plots corresponding to the execution
of 100 independent short runs of a simple hill-climbing (draw a random move,
accept it if improving or sideways). The algorithm stops after 10 iterations with-
out improvements. The performance of local search on the most constrained
instance is significantly worse than that on the other instances. This result can
be explained by the presence of many plateaus that strongly impede local search.

The performance on instances with edge density equal to 0.036 is also statis-
tically different than that on lower densities and this cannot be explained by the
results of position types analysis. The analysis of basins of attraction of local and
global minima can shed some light on this point, as it enables us to estimate the
probability of reaching a solution to the problem. Basins have been estimated
by uniformly sampling the search space with 106 samples and by applying a
deterministic steepest descent local search. The first outcome of this analysis

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

EasyAnalyzer: An Object-Oriented Framework 87

0.01 0.016 0.02 0.026 0.03 0.036 0.04

edge density

co
st

 (
lo

gs
ca

le
)

10
10

0

Fig. 4. Box-plots of the performance of randomized non-ascent local search

Table 2. Summary of statistics of relevant characteristics of attractors and their basins

Edge Density
0.010 0.016 0.020 0.026 0.030 0.036 0.040

rGBOA 1.0 0.9561 0.9084 0.5782 0.4831 0.2529 < 10−5

Number of cost levels 1 3 4 7 11 14 41
Cost with highest frequency 0 0 0 0 0 2 100
Max cost 0 4 6 12 12 14 100
Median cost 0 0 0 0 2 2 100

is that almost every initial state leads to a different attractor, i.e., almost all
basins have size 1.3 This result can be explained by observing that the problem
model induces a search space with many symmetric states, as colors can be per-
muted [16]. The most relevant statistical characteristics of those attractors are
summarized in Table 2. The table reports the fraction of states from which a
solution can be reached (rGBOA), the number of different levels of cost of the
attractors, the most frequent, max and median cost. We can observe that the
fraction of attractors corresponding to a solution decreases while edge density
increases. The rGBOA for instance at density = 0.030 is about 50% of the search
space and it halves at density 0.036, till vanishing for the most constrained in-
stance. This difference provides an explanation for the degrading performance
of the local search used, that heavily relies on cost decreasing moves. Further-
more, this analysis brings also evidence for the positive correlation between edge
density and search space ruggedness.

4.3 Multi-solver Analysis: Tabu Search Configuration Through
F -Race

As an example of using the multi-solver analysis classes we provide a description
of the tuning of tabu search parameters by means of the F -Race analysis class.

3 In this analysis the states belonging to the trajectory from the initial state to the
attractor are not counted.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

88 L. Di Gaspero, A. Roli, and A. Schaerf

Table 3. F -Race results for the configuration of the tabu-list length. Solver values are
running-times to a feasible coloring.

Rep- Solvers Statistic p
licate TS5−10 TS10−15 TS15−20 TS20−25 TS25−30 TS30−35 value value

01 2.21 21.04 7.62 4.9 4.7 9.68 — —
02 5.52 3.49 4.3 3.3 8.55 4.64 — —
03 41.47 12.34 2.9 6.97 12.09 4.43 — —
04 6.94 2.48 2.29 1.72 4.59 9.74 — —
05 3.04 2.44 6.13 3.45 7.02 8.71 — —
06 3.89 7.09 3.02 3.41 2.56 3.29 3.80952 0.577153
07 3.95 4.09 3.1 3.01 2.59 8.99 5.28571 0.382015

. . .
27 28.65 6.73 26.77 7.01 5.9 31.40 11.381 0.044328∗

28 7.12 4.3 4.71 3.77 3.5 — 5 0.287297
. . .

37 15.32 25.88 2.99 6.62 8.48 — 9.70811 0.045642∗

. . .
40 — 8.35 3.2 15.16 5.3 — 3.99 0.262546

Solvers survived after 40 replicates: TS10−15 , TS15−20, TS20−25, TS25−30

Our tabu search implementation employs a dynamic short-term tabu list
(called Robust Tabu Search in [9]), so that a move is kept in the tabu list for a
random number of iterations in the range [kmin..kmax]. In this example we want
to find out the best values of these two parameters among the following set of
options: (kmin, kmax) ∈ {(5, 10), (10, 15), (15, 20), (20, 25), (25, 30), (30, 35)}.

As a set of benchmark instances we generate a set of 40 3-colorable equi-
partitioned graphs with independent random edge assignment; the graphs have
200 nodes and edge density 0.04. The performance measure employed in this
study is the running time needed to reach a feasible coloring.

The results of the F -Race are reported in Table 3 and are those obtained as
the output of the report() method of the class Race. We limit the maximum
number of replicates to 40 and the confidence level for the Friedman test is
0.95; the first test is performed after 5 replicates. The table summarizes the
whole Race procedure, by providing the raw running time values, the value of
the statistic employed in the test (the F statistic in the present case) and the
p value of the hypothesis testing. For the replicates that lead to discarding one
of the candidates, the p value is marked with an asterisk, indicating that the
test was significant at the confidence level 0.95. The last line reports the final
outcome of the Race and shows the number of replicates performed and the list
of solvers that survived the Race.

The results confirm the robustness of employing a dynamic tabu-list. Indeed,
only the two most extreme configurations were discarded by the analysis, namely
TS5−10 and TS30−35.

Of course, these results prompted for additional analysis (for example on
different graph sizes), but as in the previous case, this is out of the scope of this
presentation since our aim was just to exemplify how to perform an analysis and
report its results with a limited effort (see, e.g., [23]).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

EasyAnalyzer: An Object-Oriented Framework 89

5 Conclusions

We have presented EasyAnalyzer, a software tool for the principled exper-
imental analysis of SLS algorithms. The tool is very general and can be used
across a variety of problems with a very limited human effort. In its final version,
it will be able to interface natively with a number of development environment,
whereas in its current form it is interfaced with EasyLocal++, but also with
any solver at the price of configuring a command-line interface.

The design of EasyAnalyzer deliberately separates the problem-/implemen-
tation-specific aspects from the analysis procedures. This allows, for example, to
(re)use directly new analyses classes —developed at the framework level— by
applying them to all the solvers for which a Solver interface already exists.

We believe that our attempt to define such an environment can be regarded as
an initial step toward engineering the experimental analysis of SLS algorithms.

For the future, we will implement the interface modules for the most common
environment. We also plan to test EasyAnalyzer on more complex problems,
with the aim of obtaining also significant results for the research on SLS-based
solvers. Finally, we plan to implement other analyses, such as those proposed in
[24,19].

References

1. Michel, L., Van Hentenryck, P.: Localizer. Constraints 5(1–2), 43–84 (2000)
2. Van Hentenryck, P., Michel, L. (eds.): Constraint-Based Local Search. MIT Press,

Cambridge (MA), USA (2005)
3. Van Hentenryck, P., Michel, L.: Control abstractions for local search. Con-

straints 10(2), 137–157 (2005)
4. Fink, A., Voß, S.: HotFrame: A heuristic optimization framework. In [25] pp. 81–

154
5. Cahon, S., Melab, N., Talbi, E.G.: ParadisEO: A framework for the reusable design

of parallel and distributed metaheuristics. Journal of Heuristics 10(3), 357–380
(2004)

6. Voudouris, C., Dorne, R., Lesaint, D., Liret, A.: iOpt: A software toolkit for heuris-
tic search methods. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 716–719.
Springer, Heidelberg (2001)

7. Di Gaspero, L., Schaerf, A.: Writing local search algorithms using EasyLocal++.
In[25]

8. Di Gaspero, L., Schaerf, A.: EasyLocal++: An object-oriented framework for flex-
ible design of local search algorithms. Software—Practice and Experience 33(8),
733–765 (2003)

9. Hoos, H., Stützle, T.: Stochastic Local Search Foundations and Applications. Mor-
gan Kaufmann, San Francisco (CA), USA (2005)

10. Halim, S., Yap, R., Lau, H.: Viz: a visual analysis suite for explaining local search
behavior. In: Proceedings of the 19th annual ACM symposium on User interface
software and technology (UIST ’06), pp. 57–66. ACM Press, New York (2006)

11. Lau, H., Wan, W., Lim, M., Halim, S.: A development framework for rapid
meta-heuristics hybridization. In: Proceedings of the 28th Annual International
Computer Software and Applications Conference (COMPSAC 2004), pp. 362–367
(2004)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

90 L. Di Gaspero, A. Roli, and A. Schaerf

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: elements
of reusable object-oriented software. Addison-Wesley Publishing, Reading (MA),
USA (1995)

13. Fonlupt, C., Robilliard, D., Preux, P., Talbi, E.G.: Fitness landscapes and perfor-
mance of metaheuristic. In: Voß, S., Martello, S., Osman, I., Roucairol, C. (eds.)
Metaheuristics – Advances and Trends in Local Search Paradigms for Optimiza-
tion, pp. 255–266. Kluwer Academic Publishers, Dordrecht (1999)

14. Pilone, D., Pitman, N.: UML 2.0 in a Nutshell. O’Reilly Media, Inc. Sebastopol
(CA), USA (2005)

15. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for
configuring metaheuristics. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO 2002), New York, USA (9-13 July 2002), pp. 11–18.
Morgan Kaufmann Publishers, San Francisco (2002)

16. Prestwich, S., Roli, A.: Symmetry breaking and local search spaces. In: Barták, R.,
Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, Springer, Heidelberg (2005)

17. Jones, T., Rawlins, G.: Reverse hillclimbing, genetic algorithms and the busy beaver
problem. In: Genetic Algorithms: Proceedings of the Fifth International Conference
(ICGA 1993), San Mateo (CA), USA, pp. 70–75. Morgan Kaufmann Publishers,
San Francisco (1993)

18. Birattari, M.: The race package for R. racing methods for the selection of the
best. Technical Report TR/IRIDIA/2003-37, IRIDIA, Université Libre de Brux-
elles, Brussels, Belgium (2003)

19. Taillard, E.: Few guidelines for analyzing methods. In: Proceedings of the 6th
Metaheuristics International Conference (MIC’05), Vienna, Austria (August 2005)

20. Garey, M.R., Johnson, D.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

21. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Comput-
ing 39(4), 345–351 (1987)

22. Culberson, J.: Graph coloring page. URL (2004) Viewed: March 2007, Updated:
March 2004, http://www.cs.ualberta.ca/~joe/Coloring/

23. Di Gaspero, L., Chiarandini, M., Schaerf, A.: A study on the short-term prohibition
mechanisms in tabu search. In: Proc. of the 17th European Conf. on Artificial
Intelligence (ECAI-2006) Riva del Garda, Italy pp. 83–87 (2006)

24. Chiarandini, M., Basso, D., Stützle, T.: Statistical methods for the comparison
of stochastic optimizers. In: Proceedings of the 6th Metaheuristics International
Conference (MIC’05), Vienna, Austria, pp. 189–195 (2005)

25. Voß, S., Woodruff, D. (eds.): Optimization Software Class Libraries. OR/CS.
Kluwer Academic Publishers, Dordrecht, the Netherlands (2002)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.cs.ualberta.ca/~joe/Coloring/

Mixed Models for the Analysis of
Local Search Components

Jørgen Bang-Jensen1, Marco Chiarandini1,
Yuri Goegebeur2, and Bent Jørgensen2

1 Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

2 Department of Statistics,
University of Southern Denmark, Odense, Denmark

{jbj,marco}@imada.sdu.dk, {yuri.goegebeur,bentj}@stat.sdu.dk

Abstract. We consider a possible scenario of experimental analysis on
heuristics for optimization: identifying the contribution of local search
components when algorithms are evaluated on the basis of solution qual-
ity attained.

We discuss the experimental designs with special focus on the role of
the test instances in the statistical analysis. Contrary to previous practice
of modeling instances as a blocking factor, we treat them as a random
factor. Together with algorithms, or their components, which are fixed
factors, this leads naturally to a mixed ANOVA model. We motivate our
choice and illustrate the application of the mixed model on a study of
local search for the 2-edge-connectivity problem.

1 Introduction

In recent years, considerable attention has been devoted to the methods for
the experimental analysis of heuristic algorithms for optimization. In the case of
stochastic local search algorithms [1], experimental analyses have been primarily
used to configure and tune the several parameters that are inherent to these
algorithms and to show that they are effective. The field of statistics, through
its mathematical foundations and well developed tools, has provided the basis
for addressing these issues by guaranteeing the reliability and the replicability
of the results [2,3,4,5]. This has increased the standard requirements for the
acceptance of research papers in the scientific venues of the field. For a typical
paper that introduces a new heuristic method for a certain problem and wants
to show that it solves it effectively, we might recognize three distinct phases of
experimental work.

In a first phase (Phase I) a small group of instances with known optima or
benchmark solutions are used to evaluate the implementation of new algorith-
mic ideas, their enhancement and development. This procedure is iterative and
interleaves observation and algorithm development. It is continued until some
new relevant results arise or some hypothesis, that merits deeper investigation,
is identified. This phase is often referred to as preliminary experimentation and

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2007, LNCS 4638, pp. 91–105, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

92 J. Bang-Jensen et al.

there is generally no need to report about it. It is part of the discovery process
in the algorithm design.

The second phase (Phase II) is designed to assess and validate the results
generated in Phase I on a much larger group of test instances with the final
aim of inferring the results on a larger scale. In particular, instances must be
carefully selected and classified in order to make it possible to distinguish also
the differences they might induce on the solvers. Phase II studies might be split
into different experiments aimed at emphasizing different aspects. This phase
requires a careful planning and the use of methods to identify, emphasize and
summarize relevant results. It is important to report about this phase in detail.

The final phase (Phase III) consists in running the best heuristic configuration
on benchmark instances and in comparing the results with the current state-of-
the-art solvers. It is appropriate to report the results of this phase in numerical
tables in order to assess the validity and importance of the results attained and
to put the work in the context of previous research. If the problem is new, this
phase may be substituted with the generation of some new test instances that are
to be made publicly available together with numerical results. The information
reported must be sufficiently detailed both in terms of computational resources
used and solution quality.

Often, in the literature, the distinction between Phase II and Phase III is not
well defined while we deem important to maintain these two phases distinct. In
Phase III, indeed, the instances available are often not well distributed in the
space of all possible instances for the problem. Nevertheless, instance parameters
might influence the performance of the algorithms and their study might unveil
deeper understanding of the problem. Hence, we advocate, in Phase II, a careful
design of the experiments through a factorial1 organization in which both the
algorithm parameters and instance parameters are controlled.

In this paper, we focus on a possible scenario of analysis within Phase II, in
which the performance of an algorithm is evaluated on the basis of the quality of
the solution it returns. Rather than simply comparing algorithms to determine
a single best, like needed in practical applications, we consider studying the
importance of algorithmic components, which is an appropriate goal in scientific
contributions [6]. In this context, the analysis of variance (ANOVA) offers the
mathematical framework for the separation of effects from a large number of
results.

Our intention is to examine in detail the application of the ANOVA in this
scenario. In particular, we concentrate on the role of the test instances that
are randomly sampled from a population. In the literature, instances have been
treated as a blocking factor [4]. This entails that the results of the analysis
are valid only for those specific instances and they should not be claimed valid
overall. Although correct for a Phase III, this model is not the best in Phase II,
where the intention is to generalize the results over the whole population. In this

1 Throughout the paper we use without difference of meaning the terms factor, com-
monly used in statistics, and parameter (or component), commonly used in the field
of heuristics.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Mixed Models for the Analysis of Local Search Components 93

case, instances are more appropriately treated as a random factor thus yielding
a mixed model of fixed and random factors [7,8]. We give analytical evidence of
this claim. This model was advocated also in [5] but, to our knowledge, it was
not used later.

We illustrate the application of the mixed model analysis in a study of local
search components on the graph problem E1-2AUG. This problem consists in
augmenting a spanning connected subgraph to a 2-edge-connected graph using
only edges from a prescribed set. In commenting the results, we emphasize the
differences that arise between the mixed and the blocking model.

We start from basic designs and proceed to the more general case. We restrict
ourselves to full factorial designs without considering extensions to fractional
factorial designs, which might become necessary with long run-time analyses. In
addition, we focus only on parametric methods which are based on few assump-
tions like the normality and the homoscedasticity of the data. Although these
assumptions might not be correct in experiments with heuristics, we advocate
their use for the following reasons. The ANOVA by means of the F-test is a well
developed and studied technique which is valid with any number of factors. The
alternative are rank based tests (such as the Friedman test), but they are only
valid for at most two factors, and permutation tests, which are less developed
and still under trial for non trivial designs and therefore rarely available in com-
mercially/publicly available statistical software. In addition, the F-test is known
to be robust against deviations from the assumptions [8]. Finally, an increase in
the number of observations per treatment group helps to become robust against
non-normality while data transformations (e.g., log transformation) improves
the situation with respect to heteroscedasticity.

Throughout the paper we assume a minimization problem and as measure of
solution quality the percent error of the approximation of the optimal solution,
i.e., (z−z∗)/z∗ ·100, where z is the observed solution cost in a run of the heuristic
on an instance and z∗ is the optimal solution cost of the instance.2 This measure
is feasible in our example problem because the optimal solution is known for
each instance.

The paper is organized as follows. In Section 2 we formalize the problem of
inference and the experimental designs and we provide analytical support for
the use of mixed models. In Section 3 we discuss the application example on the
E1-2AUG case. Both sections are subdivided into two cases, one dealing with a
basic design and another with a more advanced design. We conclude in Section
4 with indications for further extensions of this work.

2 Experimental Design and Statistical Analysis

In the most basic design, the researcher wishes to assess the performance of an
heuristic algorithm on a single problem instance π. Since heuristics are, in the

2 This measure does not meet the criteria of invariance for equivalent instances defined
by Zemel [9] but we are not concerned with this issue here.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

94 J. Bang-Jensen et al.

most general case, randomized, their performance Y on one instance is a random
variable that might be described by a probability density function p(y|π).

More commonly, we aim at drawing conclusions about a certain class or pop-
ulation of instances Π . In this case, the performance Y of the heuristic on the
class Π is described by the probability density function [3,10]

p(y) =
∑

π∈Π

p(y|π)p(π), (1)

with p(π) being the probability of sampling instance π. In other terms, we seek
the distribution of Y marginalized over the population of instances.

In experiments, we sample the population of instances and on each sampled
instance we collect sample data on the performance of the heuristic algorithm.
If on an instance π we run the algorithm r times then we have r replicates
of the performance measure Y , denoted Y1, . . . , Yr, which are, conditional on
the sampled instance, and, given the random nature of the heuristic algorithm,
independent and identically distributed (i.i.d.), i.e.

p(y1, . . . , yr|π) =
r∏

j=1

p(yj |π). (2)

Marginally (over all the instances) the observed performance measures may show
dependence, as is easily seen from

p(y1, . . . , yr) =
∑

π∈Π

p(y1, . . . , yr|π)p(π). (3)

This model can be easily extended to the case where several algorithms are
applied to the same instance by incorporating fixed effects in the conditional
structure of (2). We now illustrate with two cases how the model (3) entails
naturally a mixed model for the description of the effects in data stemming from
experiments in which optimization heuristics are compared.

2.1 Case 1: Two Factors Mixed Design

Our first experiment consists of h heuristic algorithms evaluated on p instances
randomly sampled from a class Π . The experiment is performed as follows. In
a first stage an instance is sampled from a population of instances. Next, each
algorithm is run r times on the instance. Given the stochastic nature of the
algorithms, this produces, conditional on the instance, r i.i.d. replications of the
performance measure. We use Yijk to denote the random performance measure
obtained in replication k of algorithm j on instance i.

The algorithms included in the study are the ones in which we are particu-
larly interested, and hence they can be considered as levels of a fixed factor. The
instances on the other hand are drawn randomly from some population of in-
stances, and the interest is in inferring about this global population of instances,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Mixed Models for the Analysis of Local Search Components 95

not just those included in the study. Hence, we assume that the performance
measure can be decomposed into the following mixed effects ANOVA model

Yijk = μ + αj + τi + γij + εijk, (4)

where

μ is an overall performance level common to all observations,
αj is a fixed effect due to the algorithm j,
τi is a random effect associated with instance i,
γij is a random interaction between instance i and algorithm j,
εijk is a random error for replication k of algorithm j on instance i.

The assumptions imposed on the random elements are

τi are i.i.d. N(0, σ2
τ),

γij are i.i.d. N(0, σ2
γ),

εijk are i.i.d. N(0, σ2),
the τi, γij and εijk are mutually independent random variables.

Note that the postulated mixed effects ANOVA model satisfies the structure of
the conditional and marginal models given by (2) and (3). In particular, the
conditional distribution of the performance measure given the instance and the
instance-algorithm interaction is given by

Yijk|τi, γij ∼ N(μ + αj + τi + γij , σ
2), i = 1, . . . , p, j = 1, . . . , h, k = 1, . . . , r.

Furthermore, conditional on the random effects τi and γij , i = 1, . . . , p, j =
1, . . . , h, all responses are independent. Integrating out the random effects we
obtain the unconditional model

Yijk ∼ N(μ + αj , σ
2 + σ2

τ + σ2
γ), i = 1, . . . , p, j = 1, . . . , h, k = 1, . . . , r.

Moreover, the use of random instance effects and random instance-algorithm
interactions yields dependency between the performance measurements obtained
at a specific instance. In particular we have

Cov(Yijk , Yi′j′k′) =

⎧
⎪⎪⎨

⎪⎪⎩

σ2 + σ2
τ + σ2

γ , if i = i′, j = j′, k = k′,
σ2

τ + σ2
γ , if i = i′, j = j′, k �= k′,

σ2
τ , if i = i′, j �= j′,

0, otherwise.

(5)

The parameters σ2, σ2
τ and σ2

γ determine the variance of the individual Yijk as
well as the covariance between the Yijk , and therefore are called the variance
components.

In the literature the factor instance has been treated as a blocking factor. This
entails that the analysis remains valid only in the specific instances and should
not be generalized to the whole class of possible instances. Further, when the
instances are considered as a blocking factor in model (4), the instance effects
and instance-algorithm interactions are fixed parameters, yielding

Yijk ∼ N(μ + αj + τi + γij , σ
2), i = 1, . . . , p, j = 1, . . . , h, k = 1, . . . , r.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

96 J. Bang-Jensen et al.

with Yijk being independent, i.e., unlike (4), the model does not take dependen-
cies arising from applying algorithms to the same instances into account.

The mixed model (4) with its assumptions forms the natural basis for testing
hypotheses about both fixed and random factors, and their interactions. Con-
cerning the fixed factors, the interest is usually in testing whether there is a
difference between the factor level means μ+α1, . . . , μ+αh. Formally, one tests
the hypothesis

H0 : α1 = α2 = . . . = αh = 0,

H1 : at least one αj not equal to 0.

For the random effects, tests about the particular levels included in the study
are meaningless. Instead we test hypotheses about the variance components σ2

τ

and σ2
γ , reflecting that ultimate interest is in the whole population of instances:

H0 : σ2
τ = 0, and H0 : σ2

γ = 0,
H1 : σ2

τ > 0, H1 : σ2
γ > 0,

respectively. We refer to [7,8,11] for a discussion on how the analysis of variance
is conducted in the case of mixed models.

2.2 Case 2: General Mixed Design

In this case the researcher wishes to assess how the performance measure Y is
affected by several parameters of the heuristics and of the instances. Ideally,
we fix those parameters that are most important and that we can control, and
randomize those properties that we do not understand or cannot control. The
parameters controlled may be both categorical or numerical. We consider the
following setting:

– Factors A1, . . . , Aa represent the parameters of the heuristics. Each combi-
nation of these factors gives rise to an instantiated algorithm.

– Factors B1, . . . , Bb represent the parameters of the instances or the strat-
ification factors of the whole space of instances. Each combination of the
factors B1, . . . , Bb gives rise to a different class of instances Πm.

– From each class of instances Πm, p instances are sampled randomly and on
each of them each instantiated algorithm is run once. We could also run
each algorithm r times and extension of the analysis to this case would be
straightforward.

The factors Ai, i = 1, . . . , a, and Bj , j = 1, . . . , b, are fixed factors and the
factor instance is a random factor. Since the instances within each class Πm

are different the design is nested. This yields a linear mixed model that can be
written as

YABk = μ + αA + βB + τB(k) + εABk

with

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Mixed Models for the Analysis of Local Search Components 97

A = {i1, . . . , ia}, an index set referring to the levels of the algorithmic
factors,

B = {j1, . . . , jb}, an index set referring to the levels of the instance
factors,

αA: a vector containing the factor levels of the algorithmic factors
indexed by A,

βB: a vector containing the factor levels of the instance factors
indexed by B,

τB(k): the random effect of instance k in setting B of the instance
factors,

εABk: a random error term.

3 Augmenting a Tree to a 2-Edge-Connected Graph

The application example is extracted from a study on heuristic and exact algo-
rithms for the so-called E1-2AUG problem. We refer to [12] for the full
details. Here, we focus on an intermediate result and the relative Phase II ex-
periments. We do not consider therefore state-of-the-art algorithms. We first
describe shortly the problem using graph theory notation (see [13] for an intro-
duction). Then we describe briefly the local search algorithms and the instance
classes studied in [12].

3.1 Definitions and Problem Formulation

An edge uv in a connected graph G = (V, E) is a bridge if we can partition V
into two sets S, V −S so that uv is the only edge from E with endpoints in both
S and V − S. A graph is 2-edge-connected if it is connected and has no bridges.

In an instance of the E1-2AUG problem, we are given an undirected 2-edge-
connected graph G = (V, E), a fixed spanning connected subgraph of G, S =
(V, F), and a non-negative weight function ω on E′ = E \ F . The task is finding
a subset X of E′ of minimal total weight so that A(G) = (V, F ∪ X) is 2-edge-
connected.

We consider only the case in which the graph G is a simple graph and S is a
tree. An edge uv ∈ E which is not in S is said to cover those edges of S which
correspond to the unique uv-path Puv in S. We assume that every edge uv in
F is covered by at least two edges in E′. We call a subset X of E′ a proper
augmentation of S if A(G) = (V, F ∪ X) is 2-edge-connected.

Every optimal augmentation X is minimal, that is, no edge can be deleted
from X without leaving at least one edge of S uncovered. If a given augmentation
is not minimal it can be made so by means of a trimming procedure that removes
edges from X without leaving any edge of S uncovered.

It can be noted that the E1-2AUG problem is a special case of the general set
covering problem [14]. Let us associate with each edge uv ∈ E′ the subset Wuv

of edges in S corresponding to the unique uv-path Puv in S and give this set the
same weight as the edge uv. Then, X ⊆ E′ is a proper augmentation if and only

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

98 J. Bang-Jensen et al.

if the corresponding collection of subsets {We : e ∈ X} covers every element in
the set F .

A heuristic approach to the E1-2AUG problem has been proposed by Raidl
and Ljubic [15] who designed an evolutionary local search algorithm. Their local
search consists in picking an edge in X randomly and checking whether it can
be removed. We studied more aggressive local search schemes.

3.2 Local Search Schemes

We assume that the local search is a first improvement procedure that starts
from a minimal proper augmentation.

Addition neighborhood. Neighboring augmentations are obtained by adding
l edges from E′ − X and trimming the resulting augmentation. We restrict
the examination of the neighborhood to only a choice of edges to add (called
candidate superior edges). This neighborhood is inspired by the algorithm for
set covering by Marchiori and Steenbeck [1, pag. 494].

Destruct-reconstruct neighborhood. Neighboring augmentations are ob-
tained by removing l edges from the current augmentation and reconstructing
the resulting improper augmentation by means of the greedy set covering heuris-
tic by Chvatal [16, pag. 1035].

Shortest path neighborhood. This neighborhood exploits the graph formu-
lation. It uses the following observation: if X is a proper augmentation which is
minimal and Y = X − uv for some edge uv ∈ X , then, using a shortest path
calculation in a suitable digraph, we can find a minimum cost set of new edges
Z ⊆ E′ − X − uv so that (X − uv) ∪ Z is again a proper (not necessarily mini-
mum) augmentation [12]. More definitely, for l = 1 a step in the neighborhood
consists of deleting an edge uv, finding Z via a shortest path calculation and
then trimming (X − uv) + Z. For l > 1 the process is more complicated and we
refer to [12] for its treatment.

3.3 Problem Instances

When instances are generated randomly, particular attention must be given to
possible biases. As an example, the possible non-isomorphic graphs of size 800
are more than those of size 200 and hence they should be given more probabil-
ity to appear. In practice, one proceeds by stratifying the instance space, that
is, partitioning the instance space by means of some instance parameters. The
analysis is then restricted to the specific classes created. In the case of the E1-
2AUG problem we consider three stratification parameters: type, size and edge
density. The type distinguishes between uniform random graphs (Type U) and
geometric random graphs (Type G). The former are generated by including each
of the

(
n
2

)
possible edges independently with probability p and assigning on these

edges integer weights randomly chosen from the interval (1, 10000). The latter
are generated from points in a two dimensional grid with random, integer coordi-
nates in [1, 10000). Edges with weights equal to the Euclidean distance between

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Mixed Models for the Analysis of Local Search Components 99

their incident points, rounded to the closest integer, are included if this distance
is less than an integer parameter d. In both types of graphs, the spanning tree
S is chosen randomly among those of minimal weight.

3.4 Experimental Analysis

We study the two design cases introduced in Section 2. We further subdivide
case 1 in replicated and unreplicated design.

Case 1: Two factors mixed design

Replicated. We aim at comparing the performance of the shortest path neigh-
borhood at different values of l, over an instance class, namely instances of type
G, size 400 and edge density 0.5. Hence we consider the following factors:

– algorithm: three algorithms, namely the l-shortest path neighborhood with
l = {1, 3, 5} starting from the same solution;

– instance: 10 instances randomly sampled from the class defined.

We collect 3 runs per algorithm on each instance, thus yielding in total 90
observations. A way to inspect the data is to plot the percentage error of the
algorithms within each instance as in Figure 1. As is clear from this figure, the
instances cause shifts in the performance and also affect the effect of switching
algorithms. We hence expect an important instance effect as well as important
algorithm-instance interaction.

The statistical analysis of this model can be performed with the SAS proce-
dure Mixed. All results reported in this paper were obtained by fitting the model
with the restricted maximum likelihood (REML) method. Relevant questions for
this design are

– Is there an instance effect, i.e., do the instances contribute significantly to
the variability of the responses?

– Do the mean performances of the algorithms differ? If yes, how different are
they?

– Do the instance-algorithm interactions contribute significantly to the vari-
ability of the responses?

The results of the analysis are displayed in Table 1. The section ’Covariance
Parameter Estimates’ reports the estimated variances for the instance and the
instance-algorithm interaction random effects which are σ̂2

τ = 3.27 and σ̂2
γ =

0.61, respectively. The last columns give an indication of the acceptance or re-
jection of the null hypothesis that the respective variance component is zero. The
column Pr Z gives the p-value of a one-sided normal distribution based test, i.e.,
P (Z > z∗), where Z ∼ N(0, 1) and z∗ the observed value of the test statistic
(here a standardized variance component, column Z Value). We assume a sig-
nificance level of 5%. As is clear, both the instances and the instance-algorithm
interactions contribute significantly to the variability of the performance mea-
sure, and hence, given (5), measurements obtained on a particular instance show

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

100 J. Bang-Jensen et al.

Algorithms

In
st

an
ce

s

6

8

10

12

G−400−0.5−1

gs1 gs3 gs5

G−400−0.5−2 G−400−0.5−3

gs1 gs3 gs5

G−400−0.5−4 G−400−0.5−5

gs1 gs3 gs5

G−400−0.5−6 G−400−0.5−7

gs1 gs3 gs5

G−400−0.5−8 G−400−0.5−9

gs1 gs3 gs5

6

8

10

12

G−400−0.5−10

Fig. 1. The data in the replicated design. The three algorithms, gs1, gs3 and gs5,
correspond to greedy covering construction (g) followed by shortest path local search
(s) with l = {1, 3, 5}. A local regression line (dashed) and a least square linear regression
line are superimposed.

dependence. The section ’Type 3 Tests of Fixed Effects’ in Table 1 analyzes the
fixed effects. The observed F statistic is 8.26 (column F value) on 2 and 18 de-
grees of freedom (DF) with p-value of 0.0029 (Pr > F). We can conclude that at
least one of the algorithms considered differs significantly from the others. The
section ‘Least Squares Means’ reports the generalized least squares estimates of
the fixed effects model parameters from which we obtain the point estimates for
the mean performance of the algorithms, i.e., μ+α1, μ+α2 and μ+α3. The last
column in this section gives the p-value for the rather uninformative hypothe-
ses that the mean performances are zero. Pairwise tests of these means (not
displayed), corrected for simultaneous testing, indicate that algorithm 1 differs
significantly from algorithms 2 and 3 in mean performance, while algorithms 2
and 3 do not show significant differences. We conclude that the shortest path
local search attains better performance with l > 1.

It is instructive to compare the results obtained here under a random effects
model with those obtained by considering instances as blocks. In the latter case,
the test for algorithmic differences would have been performed relative to the
mean square error, and not relative to the instance-algorithm interaction mean
square. In case of blocking, the F test has 60 denominator degrees of freedom,
compared to 18 under a mixed model, and hence, for the same significance level
it will reject sooner.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Mixed Models for the Analysis of Local Search Components 101

Table 1. Replicated case: mixed model analysis of the main effects

The Mixed Procedure
Covariance Parameter Estimates

Standard Z
Cov Parm Estimate Error Value Pr Z
inst 3.2662 1.6593 1.97 0.0245
algo*inst 0.6112 0.2505 2.44 0.0073
Residual 0.4095 0.07476 5.48 <.0001

Type 3 Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
algo 2 18 8.26 0.0029

Least Squares Means
Standard

Effect algo Estimate Error DF t Value Pr > |t|
algo gs1 9.0216 0.6336 11.6 14.24 <.0001
algo gs3 7.5883 0.6336 11.6 11.98 <.0001
algo gs5 7.7467 0.6336 11.6 12.23 <.0001

Unreplicated. In this case, we aim at comparing again the three algorithms
above with a set of 90 total experiments, as it might be imposed, for example, by
computational time considerations. Yet, we decide now to use 30 instances sam-
pled from the class and perform only one single run per algorithm on each of them.

Clearly, the mixed model can be applied also in the unreplicated case. How-
ever, it can be proven that when r = 1, the error variance σ2 and interaction
variance σ2

γ of model (4) cannot be separately identified. We therefore consider
a restricted version of (4) obtained by omitting the random interaction terms.
The estimation results are summarized in Table 2. Again we find that the vari-
ability due to the sampling of instances contributes significantly to the variance
of the performance measure and that at least two of the algorithms considered
differ in their mean performance. Note that in case of the unreplicated design
the standard error of the mean algorithmic performance is smaller than in the
replicated case (0.3670 in the unreplicated case versus 0.6336 in the replicated
case), an observation which is consistent with [10]. Moreover, when a bound on
the total number of experiments is present, the unreplicated case yields a more
powerful test for differences between the levels of the fixed factor. The results for
the random factor are ambiguous in this respect, and depend on the magnitudes
of the variance components. However, as mentioned above, the unreplicated case
does not allow estimation of the algorithm-instance interaction variance.

Case 2: General mixed design

We aim at a detailed understanding of the influence of local search components
in the performance with respect to different instance features. We consider the
following factors

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

102 J. Bang-Jensen et al.

Table 2. Unreplicated case: mixed model analysis of the main effects

The Mixed Procedure
Covariance Parameter Estimates

Standard Z
Cov Parm Estimate Error Value Pr Z
inst 3.2138 0.9177 3.50 0.0002
Residual 0.8258 0.1533 5.39 <.0001

Type 3 Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
algo 2 58 37.92 <.0001

Least Squares Means
Standard

Effect algo Estimate Error DF t Value Pr > |t|
algo gs1 9.0959 0.3670 38.4 24.79 <.0001
algo gs3 7.1470 0.3670 38.4 19.48 <.0001
algo gs5 7.5895 0.3670 38.4 20.68 <.0001

– initial: the starting solution generated by three different construction
heuristics {greedy cov, lightest add, shortest path} (see [12] for a descrip-
tion);

– neighborhood: the three local search schemes described above, which we call
in the order: {l-add, l-cov, l-sp};

– l: the parameter that determines the extension of the neighborhood with
values in {1,3,5}.

The first two factors are categorical, the last one is numerical but we treat it
as categorical because this removes the constraint that the change in the mean
response is the same for shifting l from 1 to 3 as for shifting l from 3 to 5. We
are also interested in studying the instance features. The factors describing them
are

– type: equal to {U, G};
– size: equal to {200, 400, 800};
– dens: equal to {0.1,0.5,0.9}.

Both the factors concerning the algorithms and those concerning the instances
are fixed factors. Each combination of the three instance factors gives rise to a
class from which we sample 5 instances. The factor inst is, hence, a random
factor. The experiment has 35 · 2 · 5 = 2430 experimental units. Interactions
between the fixed effects are detectable up to the 6th level.

Table 3 shows the ANOVA results. We conclude that the variability of the
instances within each class contributes significantly to the variance of the perfor-
mance measure. Moreover, we observe that the instance factors size and dens

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Mixed Models for the Analysis of Local Search Components 103

Table 3. General unreplicated case: mixed model analysis of the main effects. Least
squares means are truncated to only the best algorithmic configurations.

The Mixed Procedure
Cov Parm Estimate Error Value Pr Z

inst 3.7623 0.7095 5.30 <.0001
Residual 19.5141 0.5767 33.84 <.0001

Type 3 Tests of Fixed Effects
Num Den

Effect DF DF F Value Pr > F
initial 2 2290 323.25 <.0001
neighborhood 2 2290 105.18 <.0001
l 2 2290 42.72 <.0001
type 1 80 105.65 <.0001
size 1 80 1.04 0.3105
dens 2 80 0.37 0.6948
initial*neighborhood 4 2290 50.22 <.0001
initial*l 4 2290 61.86 <.0001
initial*type 2 2290 1248.31 <.0001
size*initial 2 2290 6.86 0.0011
initial*dens 4 2290 2.22 0.0645
neighborhood*l 4 2290 25.20 <.0001
neighborhood*type 2 2290 92.08 <.0001
size*neighborhood 2 2290 1.19 0.3056
neighborhood*dens 4 2290 1.37 0.2407
l*type 2 2290 93.49 <.0001
size*l 2 2290 3.38 0.0341
l*dens 4 2290 0.17 0.9544
size*type 1 80 3.11 0.0817
type*dens 2 80 0.09 0.9113
size*dens 2 80 0.37 0.6939
initial*neighborho*l 8 2290 17.88 <.0001

Least Squares Means
Standard

algo Estimate Error DF t Value Pr > |t|
greedy_cov.l-add.1 3.1247 0.5086 1336 6.14 <.0001
greedy_cov.l-add.3 3.2907 0.5086 1336 6.47 <.0001
greedy_cov.l-add.5 3.4624 0.5086 1336 6.81 <.0001
greedy_cov.l-cov.1 6.4922 0.5086 1336 12.77 <.0001
greedy_cov.l-cov.3 6.3530 0.5086 1336 12.49 <.0001
greedy_cov.l-cov.5 6.2631 0.5086 1336 12.32 <.0001
greedy_cov.l-sp.1 7.6148 0.5086 1336 14.97 <.0001
greedy_cov.l-sp.3 5.9073 0.5086 1336 11.62 <.0001
greedy_cov.l-sp.5 6.0453 0.5086 1336 11.89 <.0001
shortest_path.l-add.1 6.3345 0.5086 1336 12.46 <.0001
shortest_path.l-add.3 6.2280 0.5086 1336 12.25 <.0001
shortest_path.l-add.5 5.7602 0.5086 1336 11.33 <.0001
...

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

104 J. Bang-Jensen et al.

do not have a significant main effect on the quality of the solutions found while
there is a main effect of the type of instance. It would be therefore appropriate to
split the analysis in the two types of instances. All the local search components
show instead significant effects. Looking at the least squares mean estimates we
learn that in the shortest path and in the destruct-reconstruct neighborhood
a value l > 1 yields better performance while for the addition neighborhood
we have the opposite result. This explains the presence of a significant interac-
tion between l and neighborhood type. This result holds on both instance types.
Deeper investigation on the effects of the instance type unveils that: on instances
of type G all algorithms attain in general better percentage errors (main effect)
and the order of the configurations changes (interaction effect), although not for
the addition neighborhood that remains consistently the best.

Finally, we would like to emphasize, in this case, the difference with a blocked
experiment. In a blocked experiment with the instances as blocks, one would
consider all combinations of the factor levels in all blocks. But this is clearly not
feasible here because we do not have all possible factor level combinations for
a particular instance. Rather, instances are nested within the different instance
factor level combinations.

4 Conclusions and Directions for Further Research

We examined the application of the analysis of variance in the study of compo-
nents of heuristic algorithms. We showed that a mixed model of fixed factors, the
algorithm components, and a random factor, the instances, is more appropriate
than the blocking model to generalize the results to the class of instances. We
discussed the implications of the two different models both analytically and in
a practical example. In addition, we emphasized the importance of organizing
the experiments also with respect to instance parameters. This methodology is
suitable and helpful in scientific studies and we suggest its use in addition to the
widespread practice of testing on benchmark instances and reporting the results
in numerical tables.

There are a number of extensions that we could not include here for reason
of space. Diagnostic plots can be obtained also for the mixed models and we
used them to check that no transformation was needed in our data. Pairwise
comparisons in a mixed model are possible and provide further detail in the
analysis beside the least squares mean estimates. The extension to a bivariate
analysis that takes into account both solution-cost and run-time is instead not
trivial and it might be the focus of future study.

Acknowledgment. The authors wish to thank Peter Morling for the imple-
mentation of the local search algorithms.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Mixed Models for the Analysis of Local Search Components 105

References

1. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Mor-
gan Kaufmann, San Francisco, CA, USA (2004)

2. Barr, R., Golden, B., Kelly, J., Resende, M., Stewart, W.: Designing and reporting
on computational experiments with heuristic methods. Journal of Heuristics 1(1),
9–32 (1995)

3. McGeoch, C.C.: Toward an experimental method for algorithm simulation. IN-
FORMS Journal on Computing 8(1), 1–15 (1996)

4. Rardin, R.L., Uzsoy, R.: Experimental evaluation of heuristic optimization algo-
rithms: A tutorial. Journal of Heuristics 7(3), 261–304 (2001)

5. Coffin, M., Saltzman, M.J.: Statistical analysis of computational tests of algorithms
and heuristics. INFORMS Journal on Computing 12(1), 24–44 (2000)

6. Hooker, J.N.: Testing heuristics: We have it all wrong. Journal of Heuristics 1,
32–42 (1996)

7. Molenberghs, G., Verbeke, G. (eds.): Linear Mixed Models in Practice - A SAS-
Oriented Approach. Springer, Heidelberg (1997)

8. Montgomery, D.C.: Design and Analysis of Experiments, 6th edn. John Wiley &
Sons, Chichester (2005)

9. Zemel, E.: Measuring the quality of approximate solutions to zero-one programming
problems. Mathematics of operations research 6(3), 319–332 (1981)

10. Birattari, M.: On the estimation of the expected performance of a metaheuris-
tic on a class of instances. how many instances, how many runs? Tech. Rep.
TR/IRIDIA/2004-01, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
(2004)

11. Molenberghs, G., Verbeke, G.: Models for Discrete Longitudinal Data. Springer,
Heidelberg (2005)

12. Bang-Jensen, J., Chiarandini, M., Morling, P.: A computational investigation on
heuristics for 2-edge connectivity augmentation. Submitted to journal (2007)

13. Diestel, R.: Graph Theory, 2nd edn. electronic edn. Springer-Verlag, New York,
Berlin (2000)

14. Conforti, M., Galluccio, A., Proietti, G.: Edge-connectivity augmentation and net-
work matrices. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS,
vol. 3353, pp. 355–364. Springer, Heidelberg (2004)

15. Raidl, G.R., Ljubic, I.: Evolutionary local search for the edge-biconnectivity aug-
mentation problem. Information Processing Letters 82(1), 39–45 (2002)

16. Cormen, T., Leiserson, C., Rivest, R.: Introduction to algorithms, 2nd edn. MIT
Press, Cambridge (2001)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Algorithm Portfolio for the Sub-graph
Isomorphism Problem

Roberto Battiti and Franco Mascia

Università degli Studi di Trento, Trento, Italy
{battiti,mascia}@dit.unitn.it

Abstract. This work presents an algorithm for the sub-graph isomor-
phism problem based on a new pruning technique for directed graphs.
During the tree search, the method checks if a new association between
two vertices is compatible by considering the structure of their local
neighborhoods, represented as the number of limited-length paths of
different type originating from each vertex. In addition, randomized ver-
sions of the algorithms are studied experimentally by deriving their run-
time distributions. Finally, algorithm portfolios consisting of multiple
instances of the same randomized algorithm are proposed and analyzed.
The experimental results on benchmark graphs demonstrate that the
new pruning method is competitive w.r.t. recently proposed techniques.
Significantly better results are obtained on sparse graphs. Furthermore,
even better results are obtained by the portfolios, when both the average
and standard deviation of solution times are considered.

1 Introduction

The sub-graph isomorphism problem, a.k.a. graph pattern matching, consists of
determining if an isomorphic image of a graph is present in a second graph. The
problem, or relaxed versions thereof, appears in significant applications, rang-
ing from computer vision, structural pattern recognition, chemical documenta-
tion, computer-aided design, and visual languages, see for example [1,2,3,4] for
references.

Let G1(V1, E1) and G2(V2, E2) be two graphs, V and E being their vertices
and edges, respectively. A sub-graph isomorphism is a bijective function M :
V1 → V ′

2 ⊆ V2 having the following property: (u, v) ∈ E1 ⇔ (M (u),M (v)) ∈
E′

2 ⊆ E2, where E′
2 contains the edges induced by the vertices in V ′

2 . Let’s note
that another definition has been used in some papers, for example [3], where
existence of an arc in G1 implies existence of an arc (M (u),M (v)) in G2, but
not vice versa, there can be arcs in E′

2 which do not correspond to arcs in G1.
The original motivation for this work is double. First, we investigate whether

the adoption of a portfolio approach produces better results by considering more
instances of the same algorithm running in a time-sharing fashion. Second, we
experiment with novel pruning techniques based on the local structure around
the next node to be associated.

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2007, LNCS 4638, pp. 106–120, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Algorithm Portfolio for the Sub-graph Isomorphism Problem 107

In the following sections, the existing state-of-the-art approaches are briefly
reviewed in Section 2, then our new pruning technique based on paths compat-
ibility is explained in Section 3. The computational experiments to assess the
efficacy and efficiency of the new pruning proposal are presented in Section 4 for
the deterministic algorithms, and in Section 5 for the randomized versions. The
motivation for using portfolios and the proposal is explained in Section 6, and
the corresponding computational results are presented in Section 7.

2 Existing Approaches

The sub-graph isomorphism problem is NP-hard [5], and previous approaches for
its solution include [1,2,3,4]. A recent algorithm appropriate for matching large
graphs encountered in relevant applications is proposed in [4]. The proposed
method VF2 is an exact algorithm for the sub-graph isomorphism problem,
which explores the search graph by means of a depth-first-search and which
uses new pruning techniques to reduce the size of the generated solution tree.
The effectiveness of VF2 is assessed in the cited paper, which contains also
experimental comparisons with Ullmann [1] and Nauty [6] algorithms.

Let’s introduce the notation used to explain VF2 and our novel proposal. Let
M ⊂ V1 × V2 be the isomorphism, and Ms the mapping at state s in the state
space representation. A mapping is developed by adding a new pair of nodes
(v1, v2) at each step, and the state s is given by the current set of associations
between nodes of G1 and nodes of G2. M1(s) and M2(s) are the set of vertices
v1 ∈ V1, v2 ∈ V2 such that (v1, v2) ∈ Ms and G1(s) and G2(s) the sub-graphs
induced by these sets. Let T in

1 (s) and T out
1 (s) be the set of vertices adjacent

from and to the vertices in M1(s), but not yet in the partial mapping M1(s),

Fig. 1. Partial mapping Ms and sets in VF2

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

108 R. Battiti and F. Mascia

1. Match (G1, G2, s)

2. if Ms covers all the vertices of G1 then
3. return Ms

4. else
5. foreach (v1, v2) ∈ P (s) do
6. if Compatible(v1, v2) then
7. s′ ← s ∪ (v1, v2)
8. Match (G1, G2, s′)

9. done
10. return no match found

Fig. 2. A generic back-tracking scheme for the sub-graph isomorphism problem. The
function Compatible determines the pruning and it depends on the specific algorithm.

and T1(s) = T in
1 (s) ∪ T out

1 (s). The set of the vertices Ṽ1 = V1 − M1(s) − T1(s) is
the set of vertices u ∈ V1 not connected to vertices belonging to the mapping.

Fig. 1 shows the sets described above, highlighting the connections among the
induced sub-graphs G1(s) and G2(s) with solid arcs, the partial mapping with
dashed arcs, and connections with the terminal sets with dotted arcs.

Fig. 2 shows the back-tracking algorithm which implements the depth-first-
search. If the partial mapping Ms covers all the vertices of G1, the goal is reached,
otherwise the depth-first-search goes deeper in the search tree and tries to add
a new pair to the current state s.

To reduce as much as possible the CPU time, by an appropriate ordering
the algorithm never visits the same state twice. The search space reduction
w.r.t. the complete search tree is determined by the pruning technique. Pruning
acts by controlling that a candidate pair p = (v1, v2) selected from the set of
candidate pairs P (s) survives the test executed by the Compatible routine. If
Compatible returns false, the addition of the new pair is doomed to failure and
the sub-tree is pruned.

In detail, the Compatible routine for VF2 works as follows. The candidate
pairs (v1, v2) ∈ P (s) are selected with priority to the nodes adjacent from the
vertices already in the mapping, i.e., v1 ∈ T out

1 (s) and v2 ∈ T out
2 (s). If there

are no such vertices, the pairs of the ones adjacent to the vertices already in
the mapping are selected. If a graph has more than one connected component
such couples could not exists, and in this case the “less constrained” vertices
belonging to Ṽ1(s) and Ṽ2(s) are considered.

Let us now introduce the sets of predecessors and successors of the current
node: Pred(G, v) = {u ∈ V |(u, v) ∈ E} and Succ(G, v) = {u ∈ V |(v, u) ∈ E}.
The Compatible routine performs each of the following tests in order, stopping
early if at least one test fails. The first test checks if the partial mapping ex-
tended with the additional association (Ms ∪ (v1, v2), where (v1, v2) ∈ P (s)) is
still a valid isomorphism: for all nodes already in the partial mapping, edges
to (from) the last nodes considered for addition must be preserved by the
extended mapping: if an edge is present in the graph induced by M1(s) ∪ v1

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Algorithm Portfolio for the Sub-graph Isomorphism Problem 109

Fig. 3. Example of the additional checks executed by VF2. A node in G1 will have to
be mapped to a compatible node in G2 in the future steps. If no compatible node in
G2 is available the partial mapping is doomed.

the corresponding edge must be present in the graph induced by M2(s)∪v2, and
vice versa.

∀v′1 ∈ M1(s) (v′1, v1) ∈ E1 ⇒ (Ms(v′1), v2) ∈ E2 (1)

∀v′1 ∈ M1(s) (v1, v
′
1) ∈ E1 ⇒ (v2, Ms(v′1)) ∈ E2 (2)

∀v′2 ∈ M2(s) (v′2, v2) ∈ E2 ⇒ (Ms
−1(v′2), v1) ∈ E1 (3)

∀v′2 ∈ M2(s) (v2, v
′
2) ∈ E2 ⇒ (v1, Ms

−1(v′2)) ∈ E1 (4)

If the previous checks give the green light to extend the mapping, the fol-
lowing additional checks are performed to prune the search tree, trying to find
incompatibilities between branches of the two graphs that could arise in the
future steps. The tests count number of nodes with different connectivity struc-
ture w.r.t. M1 in G1 and make sure that at least the same number of nodes
with compatible connectivity structure is available in G2. Otherwise, for sure
the mapping cannot be completed in the future steps. To follow the different
cases it may be useful to consider the example in Fig. 3, related to the check
in eqn. 5. The node external to M1 is a successor of v1 and has at least one
incoming arc to M1. If the mapping is to be completed, at least one node in G2
external to M2 with compatible edges has to be present. Again, given a number
of nodes with a certain connectivity in G1 \ M1, at least the same number of
nodes with compatible connectivity has to be present in G2 \ M2. Let’s note

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

110 R. Battiti and F. Mascia

that, in addition to the required edges, some additional edges may be present
in G2 because only a subset of its nodes will be covered by the final mapping.
The different cases consider all possible directions for the edges (in-in, in-out,
out-out, out-in) and finally the case of successors and predecessors without edges
to or from the current M1.

|T in
1 (s) ∩ Succ(G1, v1)| ≤ |T in

2 (s) ∩ Succ(G2, v2)| (5)

|T in
1 (s) ∩ Pred(G1, v1)| ≤ |T in

2 (s) ∩ Pred(G2, v2)| (6)

|T out
1 (s) ∩ Succ(G1, v1)| ≤ |T out

2 (s) ∩ Succ(G2, v2)| (7)

|T out
1 (s) ∩ Pred(G1, v1)| ≤ |T out

2 (s) ∩ Pred(G2, v2)| (8)

|Ṽ1(s) ∩ Succ(G1, v1)| ≤ |Ṽ2(s) ∩ Succ(G2, v2)| (9)

|Ṽ1(s) ∩ Pred(G1, v1)| ≤ |Ṽ2(s) ∩ Pred(G2, v2)| (10)

3 Pruning by Considering Paths Compatibility

The motivation for the cited pruning technique and for the new one is as fol-
lows. Let’s assume that we are checking for an addition of the pair (v1, v2) to
the current mapping. Now, if the mapping is going to be completed, the local
structure of connections around v1 ∈ G1 will have to be mapped to a similar
local structure around v2 ∈ G2. The tests in VF2 considered counts of successor
or predecessor nodes with different connectivity, we decided to explore checks
dedicated to counting paths of different kinds. In particular, if there is a path
in G1 of length d starting from vertex v1, the same path has to be found in G2
starting from vertex v2. If such path in G2 does not exist we can safely omit
considering (v1, v2) and therefore we can prune the part of the search tree arising
from this novel association.

Let us call this general principle “local-paths-based pruning”. The realization
considered in the present work is based on counting paths in the underlying
(undirected) graph UG corresponding to the original graph. Edge (u, v) is present
in the undirected graph if and only if arc (u, v), arc (v, u) or both are present in
the original graph. Given a path in UG, it is labeled according to the direction
of the arcs in the original graph G. For example, see Fig. 4 for the illustration
of a path of kind “out-in-out” arising from v1. Let us note that we consider all
paths, including also non-simple ones, with cycles and repeated vertices.

Before starting the algorithm, a pre-processing phase counts the number of
paths of length up to d of the different kinds explained above originating at the
different vertices of the two graphs G1 and G2. When the algorithm encounters
a pair of vertices (v1, v2) to be tested for possible inclusion in the mapping,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Algorithm Portfolio for the Sub-graph Isomorphism Problem 111

Fig. 4. Path originating from vertex v1 as considered in BM1

1. CompatiblePaths (v1, v2, d)
2. foreach r in 1, . . . , d do
3. foreach i in 1, . . . , 2d do
4. if (PathsDS[v1][r][i] > PathsDS[v2][r][i]) then
5. return false;
6. done
7. done
8. return true;

Fig. 5. Pseudo-code for path-counting pruning used in the BM1

one tests whether the number of paths originating at v1 and v2 are compatible.
In detail, for each length from 1 to d, if the number of paths of at least one
kind originating from v1 is bigger that the number of paths of the same kind
originating from v2, the test is immediately terminated in a negative way. No
possible isomorphism can be found by adding (v1, v2) to the current mapping.

The new pruning technique presented in this work, hereinafter referred as BM1
(BattitiMascia-1), is a compatibility check applied before the VF2 check with
the aim of further reducing the size of the search tree. Of course the reduction
in the number of states visited comes at the cost of an increased complexity of
the extra check, and the length d of the paths impacts the precision as well as
the cost of the check.

3.1 Data Structures and Computational Complexity

The BM1 algorithm requires an appropriate value of the d parameter. Larger
values of d will prune more but at the cost of an increasing computation and
memory requirement. It is therefore of interest to evaluate the effectiveness in
the reduction of tree size, and the space and time costs as a function of the
parameter d. Fig. 5 shows the CompatiblePaths pseudo-code. The numbers of
paths of different length and different kinds are compared and the test returns
immediately as soon as, for a specific length and kind, the number of paths in
G2 is less than the number of equivalent paths in G1.

Fig. 6 shows how the neighborhood information is stored in an ad-hoc data-
structure which is computed statically before the actual search takes place. The
tree rooted at the vertex whose neighborhood has to be checked shows the infor-
mation stored in the data structure, i.e., the number of paths of length d labeled
with the corresponding “in”, “out” arc labels on the edges of the graph.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

112 R. Battiti and F. Mascia

Fig. 6. PathsDS: data structure storing the number of paths of different kinds origi-
nating from a node

During the run, each of the d-length paths checks are performed by making
a number of comparisons equal to the leaves in the binary tree representing the
neighborhood at the given length. The time complexity of a check for a single
pair of vertices is in the worst case equal to:

d∑

i=1

2i = 2d+1 − 2

The data structure is constructed in a recursive way: the nodes and all their
neighbors are visited until all paths of depth d are reached, and during the tail
of the recursion all degrees are summed up to fill in the elements.

The time complexity for building the data structure is bounded by O(nd) and
the space occupied by the table is n ∗ (2d+1 − 2), see Fig. 6.

4 Computational Experiments for VF2 and BM1

The technique has been tested against chosen instances of the AMALFI Graph
DataBase[7]. In order to study the effectiveness of BM1, ten random graphs
classes have been selected, having different number of nodes, density, and sub-
graph sizes.

Each class, which contains 100 instances of the problem, is identified by the
size of the sub-graph (si2 means that the number of vertices of the sub-graph
is 20% of the graph), the number of vertices of the graph, and the probability η
of connection between the vertices. More in detail, the graph is constructed by
connecting the vertices with a number of arcs equal to η · |V | · (|V | − 1) and by
successively adding arcs until the graph is connected [7].

The sub-graph isomorphism between each pair has been tested by means of
the original VF2 method, and of the BM1 proposal with values of the parame-
ter d ranging from 1 to 3. For these values of d the initialization time to build the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Algorithm Portfolio for the Sub-graph Isomorphism Problem 113

Table 1. Average states visited by each algorithm for selected graph classes

Instances VF2 BM1 (d=1) BM1 (d=2) BM1 (d=3)
si2 200 01 44 822.60 44 814.14 44 814.14 44 814.14
si2 400 01 505 473.15 505 473.15 505 473.15 505 473.15
si6 200 01 2 524.05 2 100.32 2 100.32 2 100.32
si6 400 01 52 714.16 48 045.39 48 045.39 48 045.39
si6 800 01 5 012 505.53 4 931 432.31 4 931 432.31 4 931 432.31
si2 200 001 428 800.24 155 074.65 118 939.67 115 336.62
si2 400 001 2 315 104.50 838 758.49 818 768.34 818 290.73
si6 200 001 8 756.76 1 292.44 813.93 741.97
si6 400 001 1 303 904.85 82 158.56 47 317.74 46 621.02
si6 800 001 6 006 050.24 1 088 435.49 1 066 752.11 1 066 752.11

Table 2. Average time in μ-seconds spent by each algorithm for selected graph classes

Instances VF2 BM1 (d=1) BM1 (d=2) BM1 (d=3)
si2 200 01 447 500.00 474 900.00 515 200.00 559 600.00
si2 400 01 11 838 800.00 12 612 900.00 13 855 200.00 14 822 800.00
si6 200 01 27 400.00 22 800.00 25 100.00 24 800.00
si6 400 01 1 709 500.00 1 613 200.00 1 733 300.00 1 847 100.00
si6 800 01 375 137 400.00 410 477 100.00 386 953 600.00 461 466 400.00
si2 200 001 2 403 500.00 983 000.00 836 500.00 903 800.00
si2 400 001 18 645 500.00 7 783 200.00 8 501 600.00 9 212 800.00
si6 200 001 45 800.00 5 700.00 3 400.00 4 100.00
si6 400 001 11 379 700.00 660 200.00 401 600.00 411 200.00
si6 800 001 79 632 000.00 13 441 000.00 14 065 400.00 13 944 800.00

Table 3. Steps and time ratio between the BM1 algorithm with three different path
lengths and VF2. The best length d of the check for the given instance is highlighted.
If there is no such value in the row, then VF2 is a better choice.

Instances BM1 (d=1) BM1 (d=2) BM1 (d=3)
steps μ-sec steps μ-sec steps μ-sec

si2 200 01 1.00 1.06 1.00 1.15 1.00 1.25
si2 400 01 1.00 1.07 1.00 1.17 1.00 1.25
si6 200 01 0.83 0.83 0.83 0.92 0.83 0.91
si6 400 01 0.91 0.94 0.91 1.01 0.91 1.08
si6 800 01 0.98 1.09 0.98 1.03 0.98 1.23
si2 200 001 0.36 0.41 0.28 0.35 0.27 0.38
si2 400 001 0.36 0.42 0.35 0.46 0.35 0.49
si6 200 001 0.15 0.12 0.09 0.07 0.08 0.09
si6 400 001 0.06 0.06 0.04 0.04 0.04 0.04
si6 800 001 0.18 0.17 0.18 0.18 0.18 0.18

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

114 R. Battiti and F. Mascia

data structure used by the CompatiblePaths routine is hardly measurable and
not significant w.r.t. the CPU time spent during the tree search. In any case,
the total CPU time including initialization is measured in the experiments.

The CPU time spent by the algorithms is measured on our reference machine,
having one Xeon processor at 3.4 GHz and 6 GB RAM. The operating system
is a Debian GNU/Linux 3.0 with kernel 2.6.15-26-686-smp. All the algorithms
are compiled with the g++ compiler with “-O3 -mcpu=pentium4”.

To compare the performance we consider both the number of visited states
(number of tree nodes) and the CPU time of the different alternatives. For
convenience we also report ratios of the above values.

Table 1 summarizes the average number of visited states of the three different
BM1(d) compared with VF2. It can be observed that the new pruning technique
delivers comparable results on the denser random graphs with η = 0.01, while
it delivers a significantly smaller number of visited states for the sparse graphs
with η = 0.001. For example, for the less dense classes (e.g. si6 200 001) the
reduction of visited states reaches 92%. While the additional cut in visited states
is negligible for the denser graphs, the cut tends to increase as a function of the
d parameter for the sparser graphs. Nonetheless, the speed of reduction in the
number of states decreases rapidly as soon as d reaches large values. This can
be observed from the Table by considering the reduction when passing from
d = 1 to d = 2 and the much smaller reduction when passing from d = 2 to
d = 3.

Both results, larger effectiveness for sparser graphs and diminishing additional
cuts for large d values, are not unexpected. One has to consider that the number
of possible paths increases very rapidly as a function of d, in particular if the
graph is dense. Because more nodes and edges are available in G2 to build
possible paths one has to expect that the number of paths in G2 when d increases
will become so large that the inequalities in the tests in the CompatiblePaths

routine will be easily satisfied. In practice this means that the bigger cuts are
for very small values of d, a positive note when one consider the CPU time spent
during the checks.

Table 2 compares the average time spent by the algorithms for finding the map-
ping between the instances of the different graph classes. For denser graphs (η =
0.01) the reduction in the number of visited states is too small to see a
reduction in the CPU time. For example, the time needed for solving si2 200 001
instances increases with the parameter d because the additional cost of the path
compatibility check is not balanced by the reduction in the number of visited
states. In the case of sparser graphs (η = 0.001) BM1 is able to prune the search
space more effectively, and the average time for solving the instances decreases
with the length of the paths checked, growing again when the increased length
does not result in further pruning.

Finally Table 3 summarizes the ratios between the average number of steps
and times spent by the algorithms for solving the problem instances. The ratio
is between BM1 and VF2, therefore values smaller than 1 implies that BM1 is
the winning algorithm.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Algorithm Portfolio for the Sub-graph Isomorphism Problem 115

5 Cumulative Distribution Functions of Randomized
Versions

The time spent by the exact algorithm depends on the particular instance of the
class of random graphs, but, for each single instance, also on the order in which
the vertices are visited. In the original algorithm [4] the choice of the candidate
vertices is deterministic. All considered algorithms have been randomized by ran-
domly permuting the vertices in the input graph G1 before starting. Therefore,
in case of ties when considering the next nodes to be mapped, different nodes
will be selected in different runs, leading to different results.

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

micro−seconds

T
er

m
in

at
io

n
pr

ob
ab

ili
ty

VF2
BM1 (d=1)
BM1 (d=2)
BM1 (d=3)

Fig. 7. Probability for randomized version of the algorithm to solve a si6 r001 m200
instance within a fixed time

0.0e+00 5.0e+07 1.0e+08 1.5e+08

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

micro−seconds

T
er

m
in

at
io

n
pr

ob
ab

ili
ty

VF2
BM1 (d=1)
BM1 (d=2)
BM1 (d=3)

Fig. 8. Probability for randomized version of the algorithm to solve a si6 r001 m400
instance within a fixed time

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

116 R. Battiti and F. Mascia

After randomization, the information of interest about the performance is sum-
marized in the empirical cumulative distribution functions (CDF for short). Fig. 7
and 8 show the probability of terminating within a given amount of microseconds
for the VF2 and BM1 algorithms on two selected instances from the sparse graphs.
Both algorithms were tested 1000 times with different random seeds on a single
representative instance of the si6 r001 m200 and si6 r001 m400 random classes.

6 Algorithm Portfolios

The algorithm portfolios method, first proposed in [8], follows the standard prac-
tice in economics to obtain different return-risk profiles in the stock market by
combining stocks characterized by individual return-risk values. Risk is related to
the standard deviation of return. An evaluation of the portfolio approach on dis-
tributions of hard combinatorial search problems is considered for example in [9].

The basic algorithm portfolio method consists of running more algorithms
concurrently on a sequential computer, in a time-sharing manner, by allocating
a fraction of the total CPU cycles to each of them. The first algorithm to fin-
ish determines the termination time of the portfolio, the other algorithms are
stopped immediately after one reports the solution.

It is intuitive that the CPU time can be radically reduced in this manner for
some statistical distributions of run-times. To clarify ideas, let us consider an
extreme example where, depending on the initial random seed, the termination
time can be of 1 second or of 1000 seconds, with the same probability. If we run a
single process, the expected termination time is approximately of 500 seconds. If
we run more copies, the probability that at least one of them is lucky (i.e., that it
terminates in 1 second) increases very rapidly towards one. Even if termination
is now longer than 1 second because more copies share the same CPU, it is
intuitive that the expected time will be much shorter than 500.

The solution time of the portfolio t is related to the one of the individual
instances of the algorithm. For a two instance-portfolio it corresponds to:

t = min{t1 ∗ 2, t2 ∗ 2} (11)

where t1 and t2 are the time spent by the to running instances to find the
solution.

For a portfolio of N component instances, the probability that all instances
terminate after t, because of the independence assumption and the slow-down
effect, is equal to:

(1 − CDF (t/N))N

The probability of the complementary event that at least one terminates before
t, and therefore that the portfolio converges before t, is therefore:

CDFportfolio(t) = 1 − (1 − CDF (t/N))N

After taking differences one derives the distribution p(t) of the portfolio fin-
ishing at time t, from which the expected value E(t) and standard deviation
σ =

√
Var(t) can estimated.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Algorithm Portfolio for the Sub-graph Isomorphism Problem 117

7 Computational Experiments for Portfolios

Considering the si6 r001 m400 instance, the average times for BM1 and VF2 are
6 and 83 seconds, respectively, and both cumulative time distribution functions
are heavy tailed having a standard deviations of 89 seconds and 20 minutes
respectively. After looking at the probability distributions, both algorithms are
good candidates to be blended in a portfolio.

By combining several instances of BM1 in time-sharing, the probability to
spend more than 20 seconds for finding a solution decreases from 0.12 to 0.02
with 2 instances and to 0.002 with only 4 instances. Fig. 9 and 10 show the new
CDFs of the two algorithms.

0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

micro−seconds

T
er

m
in

at
io

n
pr

ob
ab

ili
ty

1 inst.
2 inst.
3 inst.
4 inst.
15 inst.
40 inst.

Fig. 9. Probability for a portfolio of several instances of the randomized version of the
algorithm to solve a si6 r001 m400 instance within a fixed time

0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

micro−seconds

T
er

m
in

at
io

n
pr

ob
ab

ili
ty

1 inst.
2 inst.
3 inst.
4 inst.
15 inst.
40 inst.

Fig. 10. Probability for a portfolio of several instances of the randomized version of
the algorithm to solve a si6 r001 m400 instance within a fixed time

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

118 R. Battiti and F. Mascia

1e+00 1e+02 1e+04 1e+06

2e
+

04
5e

+
04

1e
+

05
2e

+
05

5e
+

05

std. dev.

m
ea

n
(m

ic
ro

−
se

co
nd

s)

BM1 (d=1)
VF2

Fig. 11. Portfolios of several instances of the randomized VF2 and BM1 algorithms.
The rightmost point in both curves corresponds to a single instance mean and stan-
dard deviation, the 2nd point to two instances, the 3rd three and so on. Each point is
computed on 1000 runs on si6 r001 m200. Plot is in log-log scale.

1e+04 1e+06 1e+08

1e
+

05
2e

+
05

5e
+

05
1e

+
06

2e
+

06
5e

+
06

1e
+

07
2e

+
07

5e
+

07

std. dev.

m
ea

n
(m

ic
ro

−
se

co
nd

s)

BM1 (d=1)
VF2

Fig. 12. Portfolios of several instances of the randomized VF2 and BM1 algorithms.
The rightmost point in both curves corresponds to a single instance mean and stan-
dard deviation, the 2nd point to two instances, the 3rd three and so on. Each point is
computed on 1000 runs on si6 r001 m400. Plot is in log-log scale.

The portfolio can be implemented by running one incremental step of each
instance of the algorithm at a time, sharing the same process space as well as
the path data structure PathsDS. In this way, the performance degradation is
less for the lack of a “real” context switch, and the space as well as the cost of
building the shared data structure is shared over the different instances. Fig. 11

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Algorithm Portfolio for the Sub-graph Isomorphism Problem 119

and Fig. 12 show the mean solution time versus standard deviation (measured in
micro-seconds) for two portfolios algorithms, using VF2 or BM1(1), on a single
si6 r001 m200 and si6 r001 m400 instance, respectively. It can be noted how
a portfolio consisting of a few copies of the same algorithm rapidly reduced the
standard deviation of convergence times. As in the standard portfolio usage, the
final choice among Pareto-optimal configurations is then up to the final user,
depending on his level of risk-aversion.

8 Conclusions

The novel proposal of this paper consists of the definition of a new parametric
pruning technique for the sub-graph isomorphism problem, the analysis of a ran-
domized version of the BM1 and VF2 algorithms, and the study of an algorithm
portfolio approach for the problem.

The experimental results on the considered benchmark graphs demonstrate
that the proposed pruning technique is effective in reducing the average number
of states visited by the BM1 algorithm for sparse random graphs. The reduction
in the number of steps and also in the average time spent by the algorithms
reaches 92% for some instances. On denser graph classes the reduction in the
visited states is not sufficient in order to achieve also a reduction in the average
CPU time.

When portfolios are considered, the heavy tails of the empirical run-time
distributions of the algorithms can easily be cured by running more randomized
instances concurrently on the same machine. Portfolios of algorithms using the
proposed pruning technique dominate VF2 on sparse random instances.

Acknowledgement

We acknowledge useful discussions with Krishnam Raju during his internship at
Trento about various graph isomorphism heuristics.

References

1. Ullmann, J.: An Algorithm for Subgraph Isomorphism. Journal of the ACM
(JACM) 23(1), 31–42 (1976)

2. Bunke, H., Messmer, B.T.: Recent advances in graph matching. IJPRAI 11(1), 169–
203 (1997)

3. Larrosa, J., Valiente, G.: Constraint satisfaction algorithms for graph pattern match-
ing. Mathematical Structures in Computer Science 12(4), 403–422 (2002)

4. Cordella, L.P., Pasquale Foggia, C.S., Vento, M.: A (sub)graph isomorphism al-
gorithm for matching large graphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence 16(10), 1367–1372 (2004)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co, New York, USA (1990)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

120 R. Battiti and F. Mascia

6. McKay, B.: Practical graph isomorphism. In: Numerical mathematics and comput-
ing, Proc. 10th Manitoba Conf. Winnipeg/Manitoba, pp. 45–87 (1980)

7. http://amalfi.dis.unina.it/
8. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard compu-

tational problems. Science 275, 51–54 (1997)
9. Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1-2), 43–62 (2001)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://amalfi.dis.unina.it/

A Path Relinking Approach
for the Multi-Resource

Generalized Quadratic Assignment Problem

Mutsunori Yagiura1, Akira Komiya2, Kenya Kojima2, Koji Nonobe3,
Hiroshi Nagamochi2, Toshihide Ibaraki4, and Fred Glover5

1 Graduate School of Information Science, Nagoya University, Nagoya, Japan
2 Graduate School of Informatics, Kyoto University, Kyoto, Japan

3 Faculty of Engineering and Design, Hosei University, Tokyo, Japan
4 School of Science and Technology, Kwansei Gakuin University, Sanda, Japan

5 Leeds School of Business, University of Colorado, Boulder, CO, USA
yagiura@nagoya-u.jp, nag@i.kyoto-u.ac.jp, nonobe@hosei.ac.jp,

ibaraki@ksc.kwansei.ac.jp , fred.glover@colorado.edu

Abstract. We consider the multi-resource generalized quadratic assign-
ment problem (MR-GQAP), which has many applications in various
fields such as production scheduling, and constitutes a natural gener-
alization of the generalized quadratic assignment problem (GQAP) and
the multi-resource generalized assignment problem (MRGAP). We pro-
pose a new algorithm PR-CS for this problem that proves highly effec-
tive. PR-CS features a path relinking approach, which is a mechanism
for generating new solutions by combining two or more reference solu-
tions. It also features an ejection chain approach, which is embedded in a
neighborhood construction to create more complex and powerful moves.
Computational comparisons on benchmark instances show that PR-CS
is more effective than existing algorithms for GQAP, and is competitive
with existing methods for MRGAP, demonstrating the power of PR-CS
for handling these special instances of MR-GQAP without incorporating
special tailoring to exploit these instances.

1 Introduction

We consider the multi-resource generalized quadratic assignment problem (MR-
GQAP), which is a natural generalization of the generalized quadratic assignment
problem (GQAP) [1,8] and the multi-resource generalized assignment problem
(MRGAP) [2,13]. For this problem, we are given n jobs, m agents, assignment
costs of jobs, a cost matrix between jobs, a cost matrix between agents, and
coefficients for resource constraints. The objective of MR-GQAP is to find a
minimum cost assignment of jobs to agents subject to cardinality constraints
and multi-resource constraints for each agent, where the following two types of
costs are considered: One is individual cost associated with each assignment,
and the other is mutual cost associated with a pair of assignments. MR-GQAP
is NP-hard because both MRGAP and GQAP are NP-hard. MR-GQAP is very

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2007, LNCS 4638, pp. 121–135, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

122 M. Yagiura et al.

general and includes such problems as the graph coloring problem, a special case
of the channel assignment problem, and so forth. MR-GQAP is also motivated
by some problems emerging from real-world applications such as production
scheduling problems in steel industry. It also includes the quadratic assignment
problem (QAP) as a special case of GQAP, and the generalized assignment prob-
lem (GAP) as a special case of MRGAP.

For GQAP, Lee and Ma [8] proposed linearization approaches and a branch-
and-bound algorithm, and Cordeau et al. [1] have recently proposed a sophis-
ticated memetic algorithm. For MRGAP, Gavish and Pirkul [2] proposed a
branch-and-bound algorithm and two simple Lagrangian heuristics, and Yagiura
et al. [13] devised a very large-scale neighborhood search algorithm. Nonlinear
variants are also discussed, e.g., in [11]. For more restricted special cases such
as GAP and QAP, much effort has been devoted to develop efficient exact and
heuristic algorithms. To the best of our knowledge, however, not much has been
done for GQAP and MRGAP in spite of their practical importance.

In this paper, we propose a heuristic algorithm PR-CS (path relinking with
chained shift neighborhood) for MR-GQAP. PR-CS features a path relinking
approach, which provides an evolutionary mechanism for generating new solu-
tions by combining two or more reference solutions. The idea of path relinking
was proposed by Glover [3,4], and some of its basic aspects were also intro-
duced in an earlier paper by Ibaraki et al. [6]. For more about the general
principles of the path relinking approach, see e.g., [7,9]. PR-CS also features
the idea of ejection chains [5], which is embedded in a neighborhood construc-
tion to create more complex and powerful moves. We call the resulting neigh-
borhood the chained shift neighborhood, which generalizes standard shift and
swap neighborhoods. The problem of judging the existence of a feasible solution
for MR-GQAP is NP-complete. We therefore allow our search to visit infea-
sible solutions that may violate resource constraints as well, and evaluate the
amount of the violation as penalty. The performance of the algorithm crucially
depends on penalty weights, and hence we incorporate an adaptive mechanism
for controlling them to maintain a balance between visiting feasible and infeasible
regions.

We conduct computational experiments to observe the effectiveness of each
component of the above mentioned methodologies, and to confirm that their com-
bination provides a successful framework for algorithm design. We test PR-CS
on MR-GQAP instances generated by us, and on benchmark instances of GQAP
and MRGAP. We first compare PR-CS with a basic algorithm (without path re-
linking mechanism) using only the shift and swap neighborhoods, and observe
the effectiveness of the path relinking approach and the chained shift neighbor-
hood. We then compare PR-CS with existing algorithms for GQAP and MRGAP,
which are specially tailored to these specific problems, and a general solver for
the constraint satisfaction problem. The computational results of PR-CS are
quite promising considering its generality.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Path Relinking Approach for the MR-GQAP 123

2 Formulation

Given n jobs J = {1, 2, . . . , n} and m agents I = {1, 2, . . . , m}, we undertake to
determine a minimum cost assignment of each job to exactly one agent under
cardinality constraints and multi-resource constraints for each agent, where s
resources K = {1, 2, . . . , s} are considered. In this problem, for i, i′ ∈ I, j, j′ ∈ J ,
and k ∈ K, the following data are given as the input:

cij : the cost of processing job j at agent i,
ujj′ : the cost coefficient between jobs j and j′,
wii′ : the cost coefficient between agents i and i′,
aijk: the amount of resource k consumed by job j if it is assigned to agent i,
bik: the upper bound of resource k available at agent i,
tUB
i : the upper bound on the number of jobs assigned to agent i,

tLB
i : the lower bound on the number of jobs assigned to agent i.

Assigning a job j to an agent i incurs a cost of cij and consumes an amount aijk

of each resource k ∈ K, whereas the total amount of the resource k available
at agent i is bik. Moreover, for any pair of jobs j, j′, assigning jobs j and j′ to
agents i and i′ respectively incurs a cost of f(ujj′ , wii′), where f : R2 → R is a
given function. Throughout the paper, we assume aijk ≥ 0 and bik > 0 for all
i ∈ I, j ∈ J and k ∈ K. An assignment is a mapping σ: J → I, where σ(j) = i
means that job j is assigned to agent i. Let

Jσ
i = {j ∈ J | σ(j) = i}, ∀i ∈ I,

which is the set of jobs assigned to agent i in assignment σ. Then the problem
we consider in this paper is formally described as follows:

minimize cost(σ) =
∑

j∈J

cσ(j), j +
∑

j,j′∈J

f
(
ujj′ , wσ(j)σ(j′)

)
(1)

subject to tLB
i ≤ |Jσ

i | ≤ tUB
i , ∀i ∈ I (2)

∑

j∈Jσ
i

aijk ≤ bik, ∀i ∈ I and ∀k ∈ K. (3)

We mainly consider the case with f(u, w) = uw, and call the problem the multi-
resource generalized quadratic assignment problem (MR-GQAP). We call (2) the
cardinality constraints and (3) the resource constraints. This problem includes
GQAP as its special case with f(u, w) = uw, s = 1, tLB

i = 0, tUB
i = n for all

i ∈ I and aij1 = ai′j1 for all i, i′ ∈ I and j ∈ J . MRGAP is a special case of MR-
GQAP with f(u, w) ≡ 0 and tLB

i = 0, tUB
i = n for all i ∈ I. QAP is a special case

of GQAP with aij1 = 1 for all i and j (hence resource constraints can also be
described as cardinality constraints), and GAP is a special case of MRGAP with
s = 1. Note that GQAP does not include GAP because the resource constraint
of GQAP must satisfy aij1 = ai′j1 for all i, i′ ∈ I and j ∈ J . MR-GQAP is
NP-hard in the strong sense, and the (supposedly) simpler problem of judging
the existence of a feasible solution for GAP is NP-complete, since the partition
problem can be reduced to GAP with m = 2.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

124 M. Yagiura et al.

3 Algorithm

Our algorithm PR-CS is based on local search, where the initial solutions of local
search are generated by path relinking. We describe its basic components in the
following subsections.

3.1 Local Search, Search Space and Neighborhood

Local search starts from an initial solution σ, and repeatedly replaces the current
solution σ with a better solution σ′ in its neighborhood N(σ) until no better
solution is found in the neighborhood. The resulting solution is called locally
optimal. Shift and swap neighborhoods, denoted Nshift and Nswap respectively,
are often used in local search methods for assignment type problems, where
Nshift(σ) is the set of solutions obtainable from σ by changing the assignment of
one job, and Nswap(σ) is the set of solutions obtainable from σ by exchanging the
assignments of two jobs. The sizes of these neighborhoods are O(mn) and O(n2),
respectively. In addition to these standard neighborhoods, our algorithm uses a
chained shift neighborhood, which consists of solutions obtainable by certain
sequences of shift moves. The chained shift neighborhood Nchain(σ) is the set of
solutions σ′ obtainable from σ by changing the assignments of l (l = 2, 3, . . . , n)
arbitrary jobs j1, j2, . . . , jl simultaneously so that

σ′(jr) = σ(jr−1), r = 2, 3, . . . , l

σ′(j1) = σ(jl).

In other words, for r = 2, 3, . . . , l, job jr is shifted from agent σ(jr) to agent
σ(jr−1) after ejecting job jr−1, and then the cycle is closed by assigning job
j1 to agent σ(jl). The length of a chained shift move is the number l of jobs
shifted in the move. This is based on the idea of ejection chains by Glover [5].
Since the size of such a neighborhood can become exponential in l, we carefully
limit its size by utilizing ejection trees to be explained in Section 3.3. Since
|Nshift| ≤ |Nswap| ≤ |Nchain| usually holds, Nswap is searched only if Nshift does
not contain an improving solution, and Nchain is searched only if Nshift ∪ Nswap
does not contain an improving solution.

The search space of our local search is the set of assignments σ that satisfy the
cardinality constraints (2), but may violate the resource constraints (3). Note
that it is easy to judge the existence of an assignment σ that satisfies (2): There
exists a σ satisfying (2) if and only if

∑

i∈I

tLB
i ≤ n ≤

∑

i∈I

tUB
i . (4)

In the rest of this paper, we assume (4) without loss of generality. In the shift
neighborhood, we only evaluate solutions satisfying (2). Note that all solu-
tions in the swap and chained shift neighborhoods satisfy (2) if the current
solution satisfies (2). The search space is connected if both shift and swap
neighborhoods are used; i.e., for any two solutions σ and σ′ that satisfy (2),

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Path Relinking Approach for the MR-GQAP 125

there exists a sequence σ = σ0, σ1, . . . , σl′ = σ′ such that σr satisfies (2) and
σr ∈ Nshift(σr−1) ∪ Nswap(σr−1) holds for all r = 1, 2, . . . , l′. As the search may
visit the infeasible region, we evaluate solutions by an objective function penal-
ized by infeasibility:

pcost(σ) = cost(σ) +
∑

i∈I
k∈K

αikpik(Jσ
i), (5)

where

pik(S) = max

⎧
⎨

⎩0,
∑

j∈S

aijk − bik

⎫
⎬

⎭

for i ∈ I, k ∈ K and a subset S ⊆ J of the jobs. The parameters αik (> 0)
are adaptively controlled during the search by using the rules similar to those
in [12]. The basic idea is simple and intuitively explained as follows: The weights
are updated whenever a locally optimal solution is found, and are increased
slightly if no feasible solution is found during the last call to local search, and
are decreased otherwise (i.e., at least one feasible solution is found during the
search). We omit the details due to space limitation.

For convenience, we denote by LS-SS(σ, σincum) the local search with the shift
and swap neighborhoods that starts from a solution σ, where it improves the
solution σ to a locally optimal solution and also updates the incumbent solution
σincum (i.e., the best feasible solution found by then) if it finds a better feasible
solution during the search.

3.2 An Efficient Implementation of Neighborhood Search

As it takes O(n2 + ns + ms) time to calculate pcost (5) of one solution from
scratch, it takes O(mn3 + mn2s + m2ns) time to calculate all the solutions in
the shift neighborhood, if we adopt a naive implementation. In this section,
we propose an efficient implementation of the shift neighborhood in which it
memorizes the changes of pcost induced by all shift operations in a table of size
O(mn). Below, we consider the cost changes and the resulting penalty incurred
by shifting job j from agent σ(j) to agent i. Let δc−

j , δc+
ij , δp−

j , δp+
ij be defined

as follows:

δc−
j = −

∑

j′∈J\{j}

{
f(ujj′ , wσ(j),σ(j′)) + f(uj′j , wσ(j′),σ(j))

}

−cσ(j),j − f(ujj , wσ(j),σ(j)), (6)

δc+
ij =

∑

j′∈J\{j}

{
f(ujj′ , wi,σ(j′)) + f(uj′j , wσ(j′),i)

}
+ cij + f(ujj , wii), (7)

δp−
j = −

∑

k∈K

ασ(j),k

{
pσ(j),k(Jσ

σ(j)) − pσ(j),k(Jσ
σ(j) \ {j})

}
, (8)

δp+
ij =

∑

k∈K

αik{pik(Jσ
i ∪ {j}) − pik(Jσ

i)}. (9)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

126 M. Yagiura et al.

We can decompose the operation of shifting a job j from agent σ(j) to agent
i into two steps; we first remove job j from agent σ(j) and insert it into agent
i. In this process, δc−

j and δp−
j represent the increases (actually, the decreases

times −1) of cost and penalty by the removal of job j from agent σ(j), and
δc+
ij and δp+

ij represent the increases in the cost and penalty, respectively, by the
insertion of job j to agent i. We can calculate the values of δc−

j and δc+
ij in O(n)

time. If the amount of resource k ∈ K used by agent i ∈ I (i.e.,
∑

j∈Jσ
i

aijk)
at the current solution σ is memorized in a table (this table can be prepared in
O((m+n)s) time), then δp−

j and δp+
ij can be calculated in O(s) time. It therefore

takes O(mn(n + s)) time to compute the table of δc−
j , δc+

ij , δp−
j , and δp+

ij for all
i and j.

If the above table is given, the increase in pcost by shifting job j from agent
σ(j) to agent i is given by

δij = δc−
j + δp−

j + δc+
ij + δp+

ij (10)

(δij < 0 means that we can get an improved solution by this shift operation),
which can be calculated in O(1) time. We can therefore calculate pcost of all the
solutions in the shift neighborhood in O(mn) time excluding the time to prepare
the table.

We then consider the computation time to renew the table when the current
solution is changed by a shift operation. Assume that job j′ is shifted from
agent i′ to agent i′′, and let δ̂c−

j , δ̂c+
ij , δ̂p−

j , δ̂p+
ij denote the values of δc−

j , δc+
ij ,

δp−
j , δp+

ij before the shift operation, respectively. For j
= j′, δc−
j and δc+

ij after
the shift move are given by

δc−
j = δ̂c−

j − f(ujj′ , wσ(j),i′′) − f(uj′j , wi′′,σ(j))
+f(ujj′ , wσ(j),i′) + f(uj′j , wi′,σ(j))

δc+
ij = δ̂c+

ij − f(ujj′ , wii′) − f(uj′j , wi′i) + f(ujj′ , wii′′) + f(uj′j , wi′′i),

and the computation time of this update for each pair of i and j is O(1). For the
remaining case (i.e., j = j′), we need to calculate δc−

j′ by (6), which takes O(n)
time, and δc+

ij′ = δ̂c+
ij′ holds for all i ∈ I. Therefore it takes O(mn) time to renew

the table of δc−
j and δc+

ij for all pairs of i and j.
For the table of δp−

j and δp+
ij , we calculate δp−

j according to (8) for all jobs
j ∈ J such that σ(j) = i′ or σ(j) = i′′, and calculate δp+

ij according to (9) for all
j ∈ J and i ∈ {i′, i′′}. In this case, we do not need to renew the table for other
i and j (i.e., δp−

j = δ̂p−
j holds if σ(j)
= i′, i′′, and δp+

ij = δ̂p+
ij holds for all j ∈ J

if i
= i′, i′′). Since the number of δp−
j and δp+

ij requiring updates is O(n), and it
takes O(s) time for each update, it takes O(ns) time to renew δp−

j and δp+
ij for

all i and j.
The time to renew the table of

∑
j∈Jσ

i
aijk for all i and k is O(s), because we

only need to calculate the changes at agents i′ and i′′. In total, we can renew
the table of δc−

j , δc+
ij , δp−

j and δp+
ij for all i and j and that of

∑
j∈Jσ

i
aijk for all

i in O(n(m + s)) time.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Path Relinking Approach for the MR-GQAP 127

In conclusion, a shift move can be executed in O(n(m + s)) time once the
tables are initialized. Note that it takes O(nm(n + s)) time to initialize the
tables when an initial solution for local search is given or the penalty weights
αik are changed. Although time for initializing the tables is larger than the
computation time needed for each move, we can usually ignore it because the
number of moves in a local search is much larger than the number of initialization
of tables. For many instances, s � m holds, and the computation time for a shift
move becomes O(mn), which is the same as the size of Nshift. In such cases, we
can evaluate one solution in the shift neighborhood in O(1) amortized time.

Based on a similar idea, we can evaluate a solution in the swap neighborhood
in O(s) time using δc−

j , δc+
ij , δp−

j and δp+
ij , and renew the tables in O(n(m + s))

time. (The details are omitted due to space limitation.) For many instances, s can
be considered as a fixed constant and m ≤ n hold, and hence the computation
time for a move becomes O(n2), which is the same as the size of Nswap.

3.3 Search in the Chained Shift Neighborhood

In this section, we briefly explain the idea of our algorithm for finding an im-
proved solution in the chained shift neighborhood using ejection trees. The ejec-
tion tree is a rooted tree, in which each vertex corresponds to a job, and the
path from the root to a vertex corresponds to a chained shift move.

We consider a set of n ejection trees T (σ, 1), T (σ, 2), . . . , T (σ, n) corresponding
to the current solution σ. The root vertex of T (σ, j) corresponds to job j, and
other vertices correspond to other jobs. Let j(v) denote the job assigned to a ver-
tex v, and ρ(v) denote the parent of v with depth dv ≥ 1. Let jv

0 (= j), jv
1 , . . . , jv

dv

denote the sequence of jobs in the path from the root to a vertex v in depth dv.
Then the chained shift move corresponding to this path is as follows:

σ′(jv
d) = σ(jv

d−1), d = 1, 2, . . . , dv

σ′(jv
0) = σ(jv

dv
),

where σ′ is the new solution generated by the move. Let σv be the solution
obtained by the chained shift operation that corresponds to the path to v from
its root.

It is clear that we can generate all possible solutions in the chained shift
neighborhood by considering appropriate ejection trees; however, generating all
solutions in this neighborhood is not realistic. We therefore limit the search by
the following heuristic rules.

– The search is restricted to the vertices of depth ≤ dmax (a parameter).
– In each depth d, we choose the vertices with the smallest �γ/d (γ is a

parameter) values of Δ−(v) among the set of vertices generated in depth
d (≥ 1), and generate only the descendants of the chosen vertices, where
Δ−(v) is the difference in pcost between the current solution σ and the
incomplete solution obtained by ejecting the assignment of the job jv

0 from
the solution σv.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

128 M. Yagiura et al.

In the experiment in Section 4, we set dmax = min{m, 5} and γ = 4.
We implement our algorithm so that it evaluates each solution σv in O(dv +s)

time, by using an idea similar to those in Section 3.2; however, its details are
quite complicated and are omitted. The whole computation time to search the
chained shift neighborhood is O(n2s + nm).

Even with such an elaborate implementation, the search in the chained shift
neighborhood is still expensive compared to the search in the shift and swap
neighborhoods. We therefore invoke the search in the chained shift neighborhood
only if the current solution σ is locally optimal with respect to Nshift and Nswap,
and pcost(σ) < 1.01cost(σincum) holds, where σincum is the incumbent solution.
We denote by LS-CS(σ, σincum) the local search with the shift, swap and chained
shift neighborhoods that starts from a solution σ (it receives the current solution
σ and the incumbent solution σincum and modifies them if possible).

3.4 Path Relinking and Reference Set

Path Relinking. We generate initial solutions for LS-SS and/or LS-CS by
a path relinking approach, which is a method to construct solutions from two
solutions. We define a path to be the set of solutions obtained by repeatedly
applying the shift operations from a solution to the other. If two solutions σ1
and σ2 are given, the path relinking gives a set of initial solutions S along the
path between σ1 and σ2. Let J ′ be the set of jobs assigned to different agents
between σ1 and σ2. To construct a path from σ1 to σ2, in each step, we shift
a job j ∈ J ′ such that δσ2(j),j (i.e., the increase in pcost calculated by (10)) is
minimum. In our algorithm, we apply local search to at most ω solutions in the
path having small pcost, where ω is a parameter. For a given pair of σ1 and
σ2, our path relinking procedure, denoted PR(σ1, σ2), is formally described as
follows.

Procedure PR(σ1, σ2)
Step 1. Let σ:=σ1, S := ∅ and J ′ := {j ∈ J | σ1(j)
= σ2(j)}.
Step 2. Choose a job j ∈ J ′ with minimum δσ2(j),j , and let σ(j) := σ2(j).
Step 3. Let S := S ∪ {σ}, and remove j from J ′. If |J ′| ≥ 2, return to Step 2;

otherwise proceed to Step 4.
Step 4. If |S| ≤ ω, output S, otherwise let S′ be the set of solutions in S with

ω smallest values of pcost, and output S′.

Reference Set. We keep a set R of good solutions, and choose the two solutions
σ1 and σ2 for path relinking from R. It is preferable to keep good solutions in the
reference set R to make path relinking more effective, while similar solutions in R
are not desirable from the view point of diversification. As candidates for R, we
test only locally optimal solutions obtained in the previous call to local search.

We define the distance D between two solutions σ1 and σ2 to be the number
of jobs that are assigned to different agents; i.e.,

D(σ1, σ2) = |{j ∈ J | σ1(j)
= σ2(j)}| .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Path Relinking Approach for the MR-GQAP 129

We keep R in such a way that the distance between any two solutions is at
least κ (a parameter) for attaining diversification.

We now explain the rule for renewing the reference set R. Let σ be the locally
optimal solution obtained in the previous local search, and σworst be a solution
with the maximum pcost in R. We consider the following two cases: (1) All
solutions in R have distances from σ larger than or equal to κ, and (2) otherwise.
In case (1), if |R| < ζ (a parameter) holds, then we add σ into R; otherwise,
if pcost(σ) < pcost(σworst) holds, then we exchange σ and σworst, i.e., we let
R := R \ {σworst} ∪ {σ}. In case (2), if pcost(σ) < pcost(σ′) holds for all σ′ ∈ R
such that distance between σ and σ′ is smaller than κ, then we add σ into
R, and remove all the solutions whose distance from σ is smaller than κ. The
procedure to renew the reference set for a given locally optimal solution σ,
denoted RNR(σ, R, κ), is summarized as follows.

Procedure RNR(σ, R, κ)
Step 1. If D(σ, σ′) ≥ κ holds for all σ′ ∈ R, go to Step 2; otherwise go to Step 3.
Step 2. If |R| < ζ, let τ := +∞ and A := ∅; otherwise let σworst be a solution

in R such that pcost(σ′) ≤ pcost(σworst) for all σ′ ∈ R, and then let τ :=
pcost(σworst) and A := {σworst}. Go to Step 4.

Step 3. Let A := {σ′ ∈ R | D(σ, σ′) < κ}, and let σbest be a solution in A such
that pcost(σ′) ≥ pcost(σbest) for all σ′ ∈ A. Then let τ := pcost(σbest) and
go to Step 4.

Step 4. If pcost(σ) < τ , then let R := R \ A ∪ {σ}.

3.5 The Whole Framework of the Algorithm

Our algorithm PR-CS basically applies LS-SS or LS-CS to solutions generated
by the path relinking method. Its details are summarized in this section.

At the beginning of the search, the reference set R is empty, and the size of
R may increase or decrease when procedure RNR is called. If |R| < ζ holds and
the set of initial solutions generated by the previous call to the path relinking
is exhausted, then we apply the local search to randomly generated solutions
until |R| = ζ holds, where the generated locally optimal solutions are added to
R according to the rule in Section 3.4.

We also adopt the following rules to realize intensification and diversification.
Let Rbest be the set of solutions in R with ξ smallest values of pcost, where ξ
is a parameter. Then we choose σ1 from Rbest (to intensify the search) and σ2
from R both randomly. After choosing two solutions, we add random shifts to
σ2 in 1% of jobs for diversification. Moreover, we increase the minimum distance
for renewing the reference set to 2κ if the number of calls to local search (LS-SS
or LS-CS) after the last update of the incumbent solution is more than or equal
to 2θ (θ is a parameter).

As the search in the chained shift neighborhood takes much time compared
to shift and swap neighborhoods, we invoke LS-CS only if the current penalty

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

130 M. Yagiura et al.

weights are judged as appropriate,1 and the number r of calls to local search
from the last update of the incumbent solution satisfies θ ≤ r < 2θ or r ≥ 4θ.
(Recall that we double the parameter κ for procedure RNR for diversification
when r ≥ 2θ holds. When this rule applies, we first use LS-SS in its early stage,
i.e., when 2θ ≤ r < 4θ holds.)

The whole framework of our algorithm is described as follows, where ω, ζ, ξ
and κ are parameters. In the computational experiments in Section 4, we set
ω = 5, ζ = 10, ξ = 3, θ = 2ξζω, and the initial value of κ to 3. We stop the
search when a prespecified amount of time is spent.

Algorithm PR-CS
Phase 1 (Initialization)
Step 1. Let R := ∅, S := ∅, r := 0 and κ′ := κ.
Step 2. Randomly generate a solution that satisfies (2) (recall that this is al-

ways possible by the assumption (4)), and apply a local search with the
shift and swap neighborhoods, where each solution σ is evaluated by the
total penalty excess

∑
i∈I, k∈K pik(Jσ

i) breaking ties by cost(σ). Let σ be
the locally optimal solution obtained by the local search. If σ is feasible, let
σincum := σ (σincum keeps the incumbent solution).

Step 3. Initialize the penalty weights.
Phase 2 (Construction of the reference set)
Step 4. Let σ be a randomly generated solution that satisfies (2). If the cur-

rent penalty weights are appropriate, pcost(σ) < 1.01cost(σincum) holds, and
θ ≤ r < 2θ or r ≥ 4θ holds, invoke LS-CS(σ, σincum); otherwise invoke LS-
SS(σ, σincum). Let r := r+1. If r = 2θ, then let κ′ := 2κ. If σincum is updated,
then let r := 0 and κ′ := κ. Update the penalty weights.

Step 5. Invoke RNR(σ, R, κ′). If the stopping criterion is satisfied, output the
best feasible solution σincum found during the search and halt.

Phase 3 (Construction of the set of initial solutions)
Step 6. If |R| < ζ, go to Step 4; otherwise go to Step 7.
Step 7. Let Rbest be the subset of R containing the solutions with ξ smallest

values of pcost. Choose two solutions σ1 and σ2 (σ1
= σ2) randomly, σ1 from
Rbest and σ2 from R.

Step 8. Apply random shifts to σ2, and let the new solution be σ′
2. Invoke

PR(σ1, σ′
2) and let S be its output.

Phase 4 (Improvement of solutions)
Step 9. Randomly choose a solution σ in S, and remove it from S. Then, if the

current penalty weights are appropriate, pcost(σ) < 1.01cost(σincum) holds,
and θ ≤ r < 2θ or r ≥ 4θ holds, invoke LS-CS(σ, σincum); otherwise invoke
LS-SS(σ, σincum). Let r := r + 1. If r = 2θ, then let κ′ := 2κ. If σincum is
updated, then let r := 0 and κ′ := κ. Update the penalty weights.

Step 10. Invoke RNR(σ, R, κ′). If the stopping criterion is satisfied, output the
best feasible solution σincum found during the search and halt.

Step 11. If S
= ∅, go to Step 9, otherwise go to Step 6.

1 We judge the current penalty weights to be appropriate if the rule for incrementing
the penalty weights and that for decrementing them are both invoked ten times.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Path Relinking Approach for the MR-GQAP 131

4 Computational Experiments

We conducted computational experiments of our algorithm PR-CS for MR-
GQAP, and also compared the results with those of existing algorithms for
GQAP and MRGAP. PR-CS was coded in C++ language and run on an IBM
IntelliStation Z Pro (two Intel Xeon 3.2 GHz processors with 2 GB memory,
where the computation was done on a single processor). The instances used in
our experiments are available at our site.2

4.1 Multi-Resource Generalized Quadratic Assignment Problem

We generated test instances by adding quadratic costs to the benchmark in-
stances of GAP and MRGAP called types C, D and E (see [12,13] for the details
of these types). For each instance, we added three different types of quadratic
costs, types 1, 2 and 3. For all the three types, we used f(u, v) = uv. In type 1,
we set ujj = 0 for all j and wii = 0 for all i, and we generated ujj′ for all j
= j′

and wii′ for all i
= i′ randomly. In type 2, the quadratic cost takes a positive
value only if two jobs are assigned to the same agent; i.e., ujj′ = 0 (1) if j = j′

(j
= j′) and wii′ = C (0) if i = i′ (i
= i′) (C is a positive constant chosen
from [1, 20]). Type 3 is the cost that takes a positive value only if two jobs are
assigned to different agents; i.e., ujj′ = 0 (1) if j = j′ (j
= j′) and wii′ = 0 (C)
if i = i′ (i
= i′) (C is a positive constant chosen from [1, 10]).

To see the effectiveness of path relinking and cyclic neighborhood, we compare
our algorithm PR-CS with the random multi-start local search (denoted MLS)
that repeatedly calls LS-SS from randomly generated solutions, and the PR-CS
algorithm without the chained shift neighborhood (denoted PR-SS). In MLS,
we incorporate the adaptive control mechanism of penalty weights, and PR-SS
is exactly the same as PR-CS except that it does not invoke LS-CS. We also
compare PR-CS with a general solver for the constraint satisfaction problem by
Nonobe and Ibaraki (denoted NI)[10]. We also tested CPLEX 9.0.0 (a general
mixed integer programming solver); however, it took too much time even to find
a feasible solution; e.g., CPLEX could not find a feasible solution for an instance
of n = 100 and m = 10 in one hour on a PC with Xeon 3.01 GHz.

PR-SS and MLS were also coded in C++ language and run on the same PC
as PR-CS. NI was run on a PC with Intel Pentium III 1 GHz and 1GB memory.
The time limits for MLS, PR-SS and PR-CS are 300 seconds, and that for NI is
1200 seconds. The number of runs of each algorithm for each instance is one.

Table 1 shows the costs obtained by the tested algorithms, where the column
“type” shows the type of the original GAP or MRGAP instance, the column
“quadratic cost” shows the type of the quadratic cost, and each ‘∗’ mark indicates
the best objective value among the four algorithms in the table. For MR-GQAP,
the performance of PR-CS and PR-SS is much better than MLS and NI, and
that of PR-CS is slightly better than PR-SS.

2 URL of our site: http://www.al.cm.is.nagoya-u.ac.jp/˜yagiura/mrgqap/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

132 M. Yagiura et al.

Table 1. Comparison of four algorithms for instances of MR-GQAP

instance n m s type quadratic cost NI MLS PR-SS PR-CS
qc05501 50 5 1 C 1 15897 *15822 *15822 *15822
qc05502 50 5 1 C 2 *1315 *1315 *1315 *1315
qc05503 50 5 1 C 3 2849 *2846 *2846 *2846
qc101001 100 10 1 C 1 41798 40430 *40320 *40320
qc101002 100 10 1 C 2 23290 23150 *23110 *23110
qc101003 100 10 1 C 3 104950 103840 *103710 *103710
mqc1010041 100 10 4 C 1 24263 20182 *20127 20137
mqc1010042 100 10 4 C 2 10472 10458 *10452 *10452
mqc1010043 100 10 4 C 3 89442 86066 *86060 *86060
qc102001 200 10 1 C 1 220452 214912 214094 *214028
qc102002 200 10 1 C 2 14379 14246 14224 *14222
qc102003 200 10 1 C 3 75658 72690 *72215 *72215
mqc1020041 200 10 4 C 1 62465 50833 50387 *50193
mqc1020042 200 10 4 C 2 14375 14263 14237 *14234
mqc1020043 200 10 4 C 3 76275 72631 72519 *72486
qd05501 50 5 1 D 1 38636 *38543 *38543 *38543
qd05502 50 5 1 D 2 24411 24420 *24309 *24309
qd05503 50 5 1 D 3 52770 52620 *52460 *52460
qd101001 100 10 1 D 1 43019 36686 36571 *36540
qd101002 100 10 1 D 2 8559 8328 8178 *8171
qd101003 100 10 1 D 3 15960 15390 *15048 15159
mqd1010041 100 10 4 D 1 23486 18653 *18593 *18593
mqd1010042 100 10 4 D 2 8617 8414 8231 *8228
mqd1010043 100 10 4 D 3 16077 15526 *15174 *15174
qd102001 200 10 1 D 1 269574 250141 243529 *243234
qd102002 200 10 1 D 2 25012 24036 23885 *23884
qd102003 200 10 1 D 3 84833 82215 79172 *79160
mqd1020041 200 10 4 D 1 60342 44220 *43766 *43766
mqd1020042 200 10 4 D 2 25058 24212 *23896 23897
mqd1020043 200 10 4 D 3 84707 79630 78968 *78962
qe05501 50 5 1 E 1 64434 *64148 *64148 *64148
qe05502 50 5 1 E 2 8691 *8635 *8635 *8635
qe05503 50 5 1 E 3 10320 *10309 *10309 *10309
qe101001 100 10 1 E 1 53054 49992 *49210 *49210
qe101002 100 10 1 E 2 30005 29859 29723 *29720
qe101003 100 10 1 E 3 30955 29866 *29541 29548
mqe1010041 100 10 4 E 1 39774 36354 *35607 *35607
mqe1010042 100 10 4 E 2 30359 30133 29799 *29787
mqe1010043 100 10 4 E 3 31106 30139 29639 *29628
qe102001 200 10 1 E 1 324138 306782 303556 *303468
qe102002 200 10 1 E 2 64797 61426 61342 *61338
qe102003 200 10 1 E 3 146321 133018 *131261 131287
mqe1020041 200 10 4 E 1 89056 79750 *78338 78357
mqe1020042 200 10 4 E 2 64698 61809 61398 *61397
mqe1020043 200 10 4 E 3 148245 132445 *131299 131304

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Path Relinking Approach for the MR-GQAP 133

4.2 Generalized Quadratic Assignment Problem

We tested benchmark instances of GQAP [1,8], and compared PR-CS with the
memetic algorithm by Cordeau et al. (denoted MA)[1], which is specially tailored
for GQAP. We refer the results of MA reported in [1], in which MA was run on
a SUN workstation (1.2 GHz).3

Table 2. Comparison of MA and PR-CS for instances of GQAP

MA PR-CS
instance n m value time (s) value TTB (s) TL (s)
20-15-35 20 15 1471896 96 1471896 0.300 9
20-15-55 20 15 1723638 102 1723638 0.204 10
20-15-75 20 15 1953188 102 1953188 4.856 10
30-06-95 30 6 5160920 114 5160920 0.132 11
30-07-75 30 7 4383923 156 4383923 0.056 15
30-08-55 30 8 3501695 96 3501695 0.496 9
30-10-65 30 10 3620959 210 3620959 1.440 21
30-20-35 30 20 3379359 564 3379359 0.528 50
30-20-55 30 20 3593105 462 3593105 0.756 46
30-20-75 30 20 4050938 522 4050938 0.084 50
30-20-95 30 20 5710645 5232 5710645 511.024 520
35-15-35 35 15 4456670 456 4456670 0.348 45
35-15-55 35 15 4639128 384 4639128 0.492 38
35-15-75 35 15 6301723 396 6301723 26.150 39
35-15-95 35 15 6670264 864 6670264 31.326 50
40-07-75 40 7 7405793 180 7405793 0.308 18
40-09-95 40 9 7667719 1140 7667719 9.697 50
40-10-65 40 10 7265559 240 7265559 0.368 24
50-10-65 50 10 10513029 504 10513029 0.324 50
50-10-75 50 10 11217503 606 11217503 0.544 50
50-10-95 50 10 12845598 1254 12845598 0.276 50
CPU Sun 1.2 GHz Xeon 3.2 GHz

For benchmark instances of Lee and Ma [8], both PR-CS and MA succeeded
in obtaining exact optimal solutions for all instances. The computation time of
PR-CS to obtain an optimal solution for each instance is less than 0.2 seconds,
while the computation time of MA ranges from 1 to 8 seconds. These instances
are somewhat easy and CPLEX was able to solve all of them exactly in less than
10 seconds for two-thirds of the instances, in 10–60 seconds for the rest except
one instance, and with more than 200 seconds for one instance.

Table 2 shows the results for benchmark instances of Cordeau et al. [1]. The
column “time” shows the computation time of MA, the column “TL” shows
the time limit of PR-CS, the column “TTB” shows the time when the best

3 According to the SPEC site (http://www.spec.org/), the values of SPECint2000 are
around 700–722 for Sun workstations (1.2 GHz) and around 1289–1579 for Xeon (3.2
GHz). Hence the speed of the Xeon seems to be 2–3 times faster than the Sun.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

134 M. Yagiura et al.

Table 3. Comparison with NI, TS and MLS for MRGAP instances

type NI TS PR-CS
C 0.140 0.060 0.052
D 2.118 0.885 0.992
E 1.682 0.358 0.464

solutions were found and the columns “value” show the objective values of the
best solutions obtained by the algorithms. We set the time limit of PR-CS to
the smaller value of one tenth of the computation time of MA and 50 seconds,
except for instance 30-20-95 for which we set the time limit to one tenth of the
computation time of MA. These time limits are not longer than the time spent
by MA if the speed of computers are taken into consideration. From Table 2, we
can observe that the solution values obtained by the two algorithms are exactly
the same for all instances.

These results indicate that PR-CS is at least as good as MA. The computation
times reported for MA are the time when it stopped, and hence it is not easy
to draw a decisive conclusion; however, PR-CS seems to spend less computation
time than MA.

4.3 Multi-Resource Generalized Assignment Problem

We test algorithm PR-CS on benchmark instances of MRGAP with up to 200
jobs, 20 agents and 8 resources, and compare its performance with NI and the
tabu search by Yagiura et al. (denoted TS)[13], which is specially tailored for
MRGAP. TS and NI for MRGAP were run on a workstation Sun Ultra 2 Model
2300 (300 MHz, 1 GB memory).4 The time limits of NI and TS are 300 and 600
seconds for n = 100 and 200, respectively, and the time limits of PR-CS are 30
and 60 seconds for n = 100 and 200, respectively. The number of runs of each
algorithm for each instance is one.

Table 3 shows the average gap in % of the costs obtained by the algorithms
within the time limit from the lower bound reported in [13], where the average
was taken over 24 instances for each of types C, D and E. From the table,
we can observe that the performance of PR-CS is much better than NI, and
is competitive with TS. It is worth noting that the average gap of PR-CS is
slightly better than TS for type C instances. Considering its generality, these
competitive results are quite encouraging.

5 Conclusion

In this paper, we proposed a heuristic algorithm PR-CS for MR-GQAP, which in-
corporated the path relinking and ejection chain components. Through
computational experiments on randomly generated instances of MR-GQAP, we

4 We estimate that Xeon (3.2 GHz) is about 10 times faster than the Sun (300 MHz).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Path Relinking Approach for the MR-GQAP 135

confirmed that such algorithmic components are effective for improving the per-
formance of local search. We also observed that PR-CS is more efficient than
general purpose solvers developed for constraint satisfaction and mixed integer
programming problems. Computational results on benchmark instances of GQAP
and MRGAP, special cases of MR-GQAP, disclosed that PR-CS was highly ef-
ficient in that its performance was competitive with (or sometimes even better
than) existing algorithms specially tailored for GQAP and MRGAP. Considering
the generality of our algorithm PR-CS, these results are quite satisfactory.

References

1. Cordeau, J., Gaudioso, M., Laporte, G., Moccia, L.: A memetic heuristic for the
generalized quadratic assignment problem. INFORMS Journal on Computing 18,
433–443 (2006)

2. Gavish, B., Pirkul, H.: Algorithms for the multi-resource generalized assignment
problem. Management Science 37, 695–713 (1991)

3. Glover, F.: Genetic algorithms and scatter search: unsuspected potentials. Statis-
tics and Computing 4, 131–140 (1994)

4. Glover, F.: Tabu search for nonlinear and parametric optimization (with links to
genetic algorithms. Discrete Applied Mathematics 49, 231–255 (1994)

5. Glover, F.: Ejection chains, reference structures and alternating path methods for
traveling salesman problems, Research Report, University of Colorado, Boulder,
CO. Discrete Applied Mathematics 65, 223–253 (1996)

6. Ibaraki, T., Ohashi, T., Mine, H.: A heuristic algorithm for mixed-integer program-
ming problems. Mathematical Programming Study 2, 115–136 (1974)

7. Laguna, M., Mart́ı, R.: Scatter Search: Methodology and Implementations in C.
Kluwer Academic Publishers, Boston (2003)

8. Lee, C., Ma, Z.: The generalized quadratic assignment problem, Technical Re-
port. Department of Mechanical and Industrial Engineering, University of Toronto,
Toronto, Ontario, Canada (2003)

9. Mart́ı, R., Laguna, M., Glover, F.: Principles of scatter search. European Journal
of Operational Research 169, 359–372 (2006)

10. Nonobe, K., Ibaraki, T.: A tabu search approach to the CSP (constraint satis-
faction problem) as a general problem solver. European Journal of Operational
Research 106, 599–623 (1998)

11. Voss, S.: Heuristics for nonlinear assignment problems. In: Pardalos, P.M., Pit-
soulis, L.S. (eds.) Nonlinear Assignment Problems, pp. 175–215. Kluwer Academic
Publishers, Dordrecht (2000)

12. Yagiura, M., Ibaraki, T., Glover, F.: An ejection chain approach for the generalized
assignment problem. INFORMS Journal on Computing 16, 133–151 (2004)

13. Yagiura, M., Iwasaki, S., Ibaraki, T., Glover, F.: A very large-scale neighborhood
search algorithm for the multi-resource generalized assignment problem. Discrete
Optimization 1, 87–98 (2004)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Practical Solution Using Simulated Annealing
for General Routing Problems with Nodes,

Edges, and Arcs

Hisafumi Kokubugata, Ayako Moriyama, and Hironao Kawashima

Department of Administration Engineering, Keio University,
Hiyoshi, Yokohama, Japan

kokubu@mita.cc.keio.ac.jp, a.moriyama@ana.co.jp, kawashima@ae.keio.ac.jp

Abstract. A new practical solution of the general routing problems
with nodes, edges, and arcs (NEARP) has been developed. The method
is characterized by a primitive data modeling and a simple optimiza-
tion procedure based on simulated annealing. The data structure of the
method, that is traveling routes of a number of vehicles, is expressed as
a string. The solutions generated by the proposed method are compared
with those of another method by conducting computational experiments
on instances of the NEARP. Moreover, it is shown that the proposed
method is adaptable to additional conditions.

1 Introduction

About 20% of total CO2 emissions in Japan are caused by transportation. In
particular, over one third of 20% come from freight transportation [1]. In urban
areas, demand for high-quality services such as small volume high frequency
pickups and deliveries with tight time windows have been imposed by many
clients. The rationalization in terms of decreasing the total travel time is aimed
not only at reducing operational costs in each carrier but also at relieving traffic
congestion, reducing the amount of exhaust fumes and saving energy.

Proposing decision support tools to improve city logistics, we have developed
a new practical solution for the general routing problem with nodes, edges, and
arcs (NEARP). The vehicle routing problem (VRP) involves the design of a set
of minimum cost vehicle trips, originating and ending at a depot, for a fleet of
vehicles with loading capacity that services a set of client spots with required
demands. In the case where service time windows are imposed by clients, the
routing problem is called the VRP with time windows (VRPTW). The VRP
belongs to NP-hard problems. Even concerning the simple VRP, exact methods
are not fit for large problems. Therefore, heuristics have been important in the
application of the VRP. In the last two decades, many solutions using meta-
heuristics have been proposed for the VRP. However, most of them incorporate
elaborate procedures. We have proposed an original solution for the VRPs. It is
characterized by applying a simple algorithm using simulated annealing based
on a primitive data structure. We have dealt with a standard VRPTW [2], a

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2007, LNCS 4638, pp. 136–149, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Practical Solution Using Simulated Annealing 137

VRPTW with backhauls [3], and a VRPTW with various conditions including
repeated trips and multiple depots [4]. Although the method is quite simple, the
quality of solutions is as good as the best known solutions previously reported
in the literature.

Observing delivery operations in urban areas, it is found that some delivery or
pickup demands belong not to spots but to streets. This circumstance includes
the case where the demands are densely located along a street such as postal
deliveries, and the case where the demand belongs to a street itself such as waste
collection and snow removal. In these cases, it is more suitable to formulate as the
capacitated arc routing problem (CARP) rather than as the VRP. The CARP
consists of determining a set of vehicle trips at minimum total cost, such that
each trip starts and ends at a depot, each required undirected edge is serviced by
one single trip, and the total demand handled by any vehicle does not exceed its
loading capacity. The CARP is also NP-hard and exact methods are not fit to
solve large problems. Although the CARP can be converted into an equivalent
VRP, the conversion causes a hardly acceptable increase in the size of the derived
VRP. Therefore, the direct solutions of the CARP is preferred. In spite of the
fact that good solutions using metaheuristics have been proposed for the CARP,
most of them incorporate elaborate procedures [5,6]. We also have applied our
simple solution method to the CARP [7].

Although the CARP is defined with the intention for it to be applied to
practical arc routing operations, the pure CARP is only able to express arc
routing operations in the real world imperfectly. To take waste collection as
an example, there are some punctual dumps (such as factories, schools, and
hospitals) that put out a large amount of waste, while other small waste dumps
along a street are considered as the grouped arc demand. Moreover, the CARP
handles demands which belong to only undirected arcs. There are many one-way
streets in urban areas. Besides, even in two-way streets, vehicles often collect
waste along one side of the street only, because broad streets are often split by
central reservations. In order to fit the model to the routing situations in the real
world, Prins et al. defined a general routing problem with nodes, edges, and arcs
(NEARP) that handles demands which belong to any of nodes, (undirected)
edges and (directed) arcs [8]. They applied a memetic algorithm, which has
already been applied to the CARP in [6], to the NEARP and examined their
solution in a set of NEARP instances. Incidentally, another approach to a similar
situation was proposed by Oppen et al. [9]. They aggregate the densely located
nodes along a street to a super node, while they treat the isolated node as
it is. After the aggregation is done, they solve the aggregated VRP using the
tabu search. They treat super nodes as well as (undirected) edges. It might be
understood that they proposed another practical approach to a routing problem
with nodes and edges.

In this paper, we apply our simpler method, which has been designed for the
VRP and applied to the CARP, to the NEARP defined by Prins et al. Moreover,
we try to compare our solution with the one given by them by applying our
solution to the same set of instances.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

138 H. Kokubugata, A. Moriyama, and H. Kawashima

2 The Node, Edge and Arc Routing Problem (NEARP)

As mentioned in the previous section, Prins et al. defined the NEARP [8]. In this
section, we make a brief sketch of it by referencing them. The NEARP allows a
mixed network including required nodes, edges and arcs. Two distinct costs are
handled for each link: one is the deadheading cost, i.e., the cost for a traversal
without service (called deadhead by transporters) and the other is service cost,
when the link is traversed to be serviced.

2.1 Description of the NEARP

Prins et al. defined the NEARP and described it in the style used by Crescenzi
et al. [10] for their compendium of NP optimization problems. It is quoted as
follows.

– INSTANCE: Mixed graph G = (V, E, A), initial vertex s ∈ V , vehicle capac-
ity W ∈ IN, subset VR ⊆ V , subset ER ⊆ E, subset AR ⊆ A, traversal cost
c(u) ∈ IN for each ‘entity’ u ∈ V ∪ E ∪ A, demand q(u) ∈ IN and processing
cost p(u) ∈ IN for each required entity (task) u ∈ VR ∪ ER ∪ AR.

– SOLUTION: A set of cycles (trips), each containing the initial vertex s, that
may traverse each entity any number of times but process each task exactly
once. The total demand processed by any trip cannot exceed W .

– MEASURE: The total cost of the trips, to be minimized. The cost of a trip
comprises the processing costs of its serviced tasks and the traversal costs of
the entities used for connecting these tasks.

The number of vehicles actually used is a decision variable in this problem. It
is obvious that the VRP and the CARP are special cases of the NEARP.

Task

Node

Edge

Arc

Depot

Vehicle 1

Vehicle 2

Fig. 1. NEARP in urban streets

2.2 A Precedent Solution for NEARP

Prins et al. solved the NEARP by a memetic algorithm (MA) which is composed
of two phases. In the global phase, they use the selection and the crossover op-
erations. In the local phase, they use a local search procedure instead of the
mutation. Basically, the state of a solution is expressed as a set of trips corre-
sponding to a fleet of vehicles and evaluated with total cost. When the solution

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Practical Solution Using Simulated Annealing 139

is moved into the global phase, a set of trips is converted to a string, which
is treated as a chromosome in MA. Note that required entities (nodes, edges,
and arcs) are arranged according to the routing order but the delimiters parti-
tioning trips are removed from the string when the conversion is carried out. In
the global phase, two chromosomes are randomly selected first. The least cost
chromosome is selected from these two as a parent in a population. Another
parent is selected by the same manner. The extended order crossover is applied
to the pair of parents in order to produce a pair of children. After one child is
selected randomly from the pair, the string is divided into trips corresponding to
individual vehicles by an optimal splitting procedure. Then, the trips are moved
to the local phase. In the local phase, the local search procedure, which calls
successive sub procedures listed as follows, is applied to the inside of a trip or
between two trips. When a required edge is encoded as two opposite arcs, inv(a)
is the reversed task of a. The term ‘task’ is used as a required entity.

– Flip one task a, i.e., replace a by inv(a) in its trip,
– Move one task a after another task or after the depot,
– Move two consecutive tasks a and b after another task or after the depot,
– Swap two tasks a and b,
– 2-opt moves

Moreover, each task a moved to another location or swapped with another task
may be inserted as a or inv(a). Each sub procedure ends by performing the first
improving move detected or when all moves have been examined. The process
is repeated until no further saving can be found. When the local optimization
finishes, all trips are concatenated into a string in which delimiters are removed.
After the resultant string is replaced by one of the previous chromosomes in the
population, the global phase begins in the next generation.

3 The Proposed Method for Solving NEARP

Although the precedent method mentioned above shows good performance, its
procedures are considerably complex. In particular, the local search procedure
is complicated. It is reported that the local searches absorb 95% of the total
MA running time on big instances. We propose a simpler data model and a one
phase algorithm to solve the NEARP.

3.1 Data Modeling

The proposed solution modeling and algorithm are based on an internal network
coding. In this coding, all entities (nodes, edges, arcs) are stored in a common
form which is embodied as a three dimensional array. The first component of it
expresses the head node of the entity and the second expresses the tail node.
The third is the Boolean value that attains 1, if and only if the entity is an arc.
If the head and the tail are same node, the entity is understood as a single node.

The model to express a solution of the NEARP is realized as a sequence of
integers, i.e., a string. In the string, the position of a number, which is a symbol

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

140 H. Kokubugata, A. Moriyama, and H. Kawashima

H-G0FED00CBA

Vehicle 1

Vehicle 1

A

B
C

D

E

F
H

G

Task

Node

Edge

Arc

G

-G

0�Depot

Others�Tasks

Vehicle 4

Vehicle 3

Vehicle 2 (not in use)

Vehicle 3 Vehicle 4

Depot

Fig. 2. The string model for NEARP

of the required entities (tasks), implies not only which vehicle tours the tasks
but also the routing order of it. An example of the string model is illustrated in
Fig.2. In the string, a required arc or a required node is expressed by a positive
number, whereas a required edge is expressed by a positive number or a negative
number according to the direction traversed. The special number ‘0’ should be
interpreted not only as the depot but also as the delimiter which partition the
trips. If we denote the number of vehicles as m, (m− 1) ‘0’ s are provided in the
string. If there is no number between ‘0’ and ‘0’, the concerned vehicle is not
in use.

When the cost of the solution is evaluated (see Sec.3.3), the internal coding
corresponding to the task in the string is referred.

3.2 Transformation Rules

A new state of solution is generated from the present state by one of the following
three types of transformation rules. The first rule is to exchange a number with
another one in the string. The second rule is to delete an arbitrary number
and then insert it to another position in the string. The third rule is to reverse
the traversing direction of an undirected edge. These three transformation rules
are illustrated in Fig.3. However, the third rule ‘direction reversal’ can not be
applied to directed arcs.

Note that the rules are also applied to the special number ‘0’. In other words,
‘0’ is evenly treated with other numbers. If ‘one-to-one exchange’ is executed
within a substring, only a route of one vehicle will be changed.

If ‘one-to-one exchange’ is executed between two components that belong
to different substrings, two tasks will be exchanged between two vehicles. An
example is illustrated in Fig.4.

If ‘one-to-one exchange’ is executed between a non-zero number and ‘0’, a
partial route of one vehicle is moved and embedded in another vehicle’s route.
An example is illustrated in Fig.5.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Practical Solution Using Simulated Annealing 141

C

C

B

A0-B CA

(3) Direction
Reversal

B

A

(1) One to one

0BCA

Exchange

0CBA

Present
Solution

B

A C

B

A C

(2) Delete and

0BAC

Insert

Fig. 3. Three transformation rules

ED0CBA EC0DBA

One-to-one Exchange

E
0

D
C

Vehicle 1
Vehicle 2A

B

0

D
C

B

Vehicle 1
Vehicle 2A E

Fig. 4. A result of ‘one-to-one exchange’ between two non-zeros striding over ‘0’

ED0CBA EDBC0A

One-to-one Exchange

E

0

D
C

Vehicle 1
Vehicle 2A

B
0

D
C

B

Vehicle 1
Vehicle 2A

E

Fig. 5. A result of ‘one-to-one exchange’ between non-zero and ‘0’

When the second transformation rule ‘delete and insert’ is applied, several
different cases also arise. If a non-zero number is deleted and inserted striding
over ‘0’, a task is moved to another vehicle’s route. An example is illustrated in
Fig.6.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

142 H. Kokubugata, A. Moriyama, and H. Kawashima

ED0CBA EDB0CA

Delete and Insert

E

0

D
C

Vehicle 1
Vehicle 2A

B
0

D
C

B

Vehicle 1
Vehicle 2A

E

Fig. 6. A result of deleting non-zero and inserting it striding over ‘0’

If a ‘0’ is deleted and inserted to another position, the routes are changed
drastically. An example is illustrated in Fig.7.

ED0CBA EDCB0A

Delete and Insert

E

0

D
C

Vehicle 1
Vehicle 2A

B
0

D
C

B

Vehicle 1
Vehicle 2A

E

Fig. 7. A result of deleting ‘0’ and inserting it to another position

3.3 Objective Function

The objective of the NEARP is the minimization of the total cost which is sub-
ject to constraints including the loading capacity of each vehicle. The objective
function of the NEARP is formulated as follows.

E =
n∑

i=1

csi +
n−1∑

i=1

psi,si+1 (1)

where s = (s1, s2, · · · , sn) is a string that consists of the tasks and a depot; ck

is the cost for processing the task k (if k = 0,then ck = 0); pk,l is the minimal
traversing cost from the tail of the task k to the head of the task l.

In spite of the fact that the sum of processing costs is constant, the objective
is defined as Eq.(1) in order to apply our method to the instances given by
Prins et. al and compare our method with their method. All values of pk,l are

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Practical Solution Using Simulated Annealing 143

calculated based on the internal network coding explained in Sec. 3.1 using the
Warshall-Floyd’s algorithm beforehand with optimization. If k and l are both
the edge tasks, four different values of pk,l must be computed, according to the
traversing directions of k and l.

3.4 Optimization Algorithm

Simulated annealing (SA) is adopted as the optimization technique since it is
characterized by simple stochastic procedures and by global searching scope.
Starting with a random initial state, it is expected to approach an equilibrium
point. In the proposed method, we apply the three transformation rules described
in Sec. 3.2 to the string model. The entire algorithm for the NEARP is described
as follows.

{I. Preparation}
Read network data;
Calculate the minimum path cost pk,l between two tasks;
{II. Initialization}
Generate a random initial feasible solution x0;
x := x0; x∗ := x;
Calculate INITTEMP by exploratory SA executions;
T := INITTEMP;
{III. Optimization by SA}
Minimize E by applying the three transformation rules to the string model of x
in the framework of SA;
{IV. Output}
Output the best solution x∗.

Step III, that is the main part of this algorithm, is detailed as follows.

Repeat
trials := 0; changes := 0;
Repeat

trials := trials + 1;
Generate a new state x′ from the current state x by applying randomly
one of the three transformation rules to the string model of x;
If x′ is feasible Then

Calculate ΔE = E(x′) − E(x);
If ΔE < 0 Then

x′ is accepted as a new state;
If E(x′) < E(x∗) Then x∗ := x′

Else x′ is accepted with probability exp(−ΔE/T)
If x′ is accepted Then changes := changes + 1; x := x′

Until trials ≥ SIZEFACTOR · N or changes ≥ CUTOFF · N ;
T := T · TEMPFACTOR

Until T ≤ INITTEMP/FIN DIVISOR

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

144 H. Kokubugata, A. Moriyama, and H. Kawashima

The feasibility of the generated state x′ is determined by checking whether
the total load of any vehicle does not exceed its loading capacity. Parameters
that appear in the above algorithm will be explained in Sec.4.3.

4 Experimental Evaluations

We have tried to solve the NEARP and compared it with the results of the
precedent method.

4.1 Instances of NEARP

Prins et al. provide 23 instances of the NEARP [8].These instances were produced
by their original generator accompanied with randomization. They include 1-93
required nodes, 0-94 required edges and 0-149 required arcs, among 11-150 nodes
and 71-311 links (integrated alias with edges and arcs). As mentioned by them,
the lower bounds have not been found for their NEARP instances. Because the
VRP and the CARP are special cases of the NEARP, they tried to test their
solution method by applying it to the benchmark VRPs and CARPs. They
obtained good results. The data files of NEARP instances were sent by them at
our request.

4.2 Generation of a Random Initial Feasible Solution

The initial feasible solution affects the quality of the computational result. We
generate a random initial feasible solution described as step II of our algorithm
(Sec.3.4) by using the following procedures.

1. Sort tasks in descending order of their quantity of demand;
2. Assign the sorted tasks to vehicles without exceeding their loading capacity;
3. Form the string model in accordance with the result of the assignment;
4. Apply random change according to one of the three transformation rules for

1000 times. Compute the feasibility rate, that is the rate of the number of
the feasible solutions generated per the number of total generated solutions,
of each transformation rule.

4.3 Probabilities of Three Transformations and Parameter Setting

Three transformation rules mentioned in Sec.3.2 should be applied equally prob-
ably to produce a new feasible state of solution, according to the results of the
preliminary numerical experiments.

However, the feasibility rates of the results generated from the three transfor-
mations are not equal. In order to produce a feasible solution generated by each
transformation with almost equal probability, we adjust the rate of applying
these transformations, taking account of the feasibility rates computed in the
initialization procedures described above.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Practical Solution Using Simulated Annealing 145

According to the preliminary experiments and the reference to the recom-
mended values by Johnson et al. [11,12], the standard values of the parameters
that appear in our simulated annealing algorithm are commonly set as follows.

N = 2L2 (L : length of string)
SIZEFACTOR = 4
CUTOFF = 0.1 (Repeat iterations in the same T ,

until (trials ≥ SIZEFACTOR · N or changes ≥ CUTOFF · N))
INITPROB = 0.4 (Initial acceptance probability)
TEMPFACTOR = 0.99 (Tn+1 = 0.99 Tn)
FIN DIVISOR = 10 (If T ≤ INITTEMP/FIN DIVISOR,

terminate the whole iterations.)

INITTEMP must be calculated by exploratory and simplified SA executions
in step II of the entire algorithm, so as to make changes/trials = INITPROB (=
0.4).

4.4 Experimental Results

A comparison between the solutions generated by the proposed method and the
solutions given by Prins et al. is done for 23 NEARP instances. In Table 1, the
column MA indicates the total cost computed with the memetic algorithm by
Prins et al. Best∗MA indicates the best solution found with various parameter
settings during their experiments. Because SA is an optimization method based
on randomization, we solved each problem ten times with the standard parameter
setting shown above. Avg10SA is the averaged result of ten computations, while
Best10SA is the best result of them. Note that the Best10SA is obtained by
computations with the standard parameter setting and it is quite different from
the Best∗MA in spite of using the same word ‘Best’. Average deviations over
the best values (indicated in bold-face) are given in percent.

Compared with the results of MA, Avg10SA obtains better solutions in 13
instances, and equal solutions in 2 instances. Compared with the results of MA,
Best10SA obtains better solutions in 16 instances, and equal solutions in 4 in-
stances. Compared with the Best∗MA, Best10SA obtains better results in 10
instances, and equal results in 5 instances in spite of using the common stan-
dard parameters. Regarding the average deviations over the best value, Avg10SA
is superior to MA, Best10SA gets better results than Best∗MA.

We coded our program in the C language and computed on a 1.8GHz Pentium
IV PC with Windows XP, while the program by Prins et al. was coded in the
Pascal-like language Delphi version 5 and tested on a 1 GHz Pentium III PC with
Windows 98. Despite taking the difference of computing speed into consideration,
both the average and the deviation of the computation time spent for our method
are smaller than for their method (Fig.8).

5 Varieties of NEARP

The proposed method is adaptable to additional conditions. In this section, we
briefly introduce three possible varieties.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

146 H. Kokubugata, A. Moriyama, and H. Kawashima

Table 1. Computational results for NEARP instances

No Nodes Tasks(N, E, A) MA MAtime(s) Best∗MA Avg10SA SAtime(s) Best10SA
1 21 (11,0,37) 2632 108.3 2589 2617.1 15.1 2595
2 68 (36,0,149) 12336 1078.5 12241 12322.4 661.4 12220
3 31 (16,8,55) 3702 157.0 3669 3695.2 56.0 3660
4 53 (10,75,13) 7583 548.1 7583 7728.5 76.1 7641
5 32 (23,4,23) 4562 100.0 4544 4685.3 41.5 4531
6 49 (40,4,64) 7087 204.5 7087 7101.4 98.0 7087
7 75 (54,8,106) 9974 662.6 9748 9704.8 351.7 9615
8 77 (63,6,108) 10714 767.6 10658 10710.2 263.8 10524
9 29 (6,39,5) 4041 140.8 4038 4132.4 12.5 4103

10 56 (4,94,9) 7755 843.2 7582 7763.2 108.3 7687
11 69 (65,6,11) 4503 414.7 4494 4599.6 49.8 4506
12 38 (1,0,52) 3235 71.3 3235 3235.0 21.4 3235
13 150 (79,2,60) 9339 550.6 9110 9270.6 312.8 9133
14 94 (93,0,0) 8615 357.2 8566 8769.3 65.3 8608
15 52 (0,91,0) 8359 390.2 8340 8385.3 97.3 8280
16 71 (36,0,133) 9389 536.1 8933 9024.3 445.5 8886
17 42 (16,16,31) 4165 116.1 4037 4107.6 43.0 4037
18 117 (39,0,88) 7411 475.7 7254 7214.6 278.4 7098
19 126 (61,9,142) 17036 1273.4 16554 16677.5 469.8 16347
20 43 (38,2,33) 4918 164.6 4844 4902.9 50.7 4846
21 60 (55,68,57) 18509 1370.6 18201 18318.3 530.4 18069
22 25 (7,10,25) 1941 65.8 1941 1970.5 9.5 1941
23 11 (3,2,15) 780 20.4 780 780.0 2.7 780

Average 1.65% 452.9 (s) 0.38% 1.51% 176.6 (s) 0.22%

�

���

���

���

���

����

����

����

����

� �� ��� ��� ��� ���

���������	�

�
�
�
�
�
�
�	

��
��

��
�
�

��������

���������

Fig. 8. Comparison of computation time

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Practical Solution Using Simulated Annealing 147

5.1 NEARP with Time Windows (NEARPTW)

If some of tasks are imposed with time windows, the NEARP is called as the
NEARP with time windows (NEARPTW). To cope with the NEARPTW, we
have incorporated a penalty term, concerning to sum of excess time over time
window, into the cost function.

E′ = aE + b
n∑

i=1

Ti (2)

where E is total cost defined in Eq.(1), Ti is excess time over time window
regarding the task i. Because the string model holds touring order of tasks and
the arrival time of task i can be calculated, it is easy to compute Ti.

5.2 NEARP with Repeated Trips

We are able to deal with the case in which repetitive trips of a vehicle are
allowed. After the first trip returns to the depot, load and unload are operated
at the depot. Then, the second trip starts. In order to cope with this problem,
we incorporate another delimiter, for example ‘999’, into the string model. In
the state transformation of a solution, ‘999’ is treated the same as ‘0’ as well as
other numbers which represent tasks (Fig.9).

A

B

CDepot

E

D

0ED999CBA G

1st trip 2nd trip

F

Vehicle 1

Vehicle 2

Vehicle 2
Vehicle 1

F

G

1st trip

2nd trip

Fig. 9. NEARP with repeated trips

5.3 Multi Depots NEARP

The case in which more than one depot is managed at a time could be dealt
with. We incorporate the other delimiter, for example ‘−999’, into the string
model. In the state transformation of a solution, ‘−999’ is treated evenly with
‘0’ and other numbers (Fig.10). In addition to these three examples, we are able
to apply our method to the pickup and delivery problem and so on. These are
implemented by incorporating special numbers into the string model.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

148 H. Kokubugata, A. Moriyama, and H. Kawashima

A

B C

D

E

FG
H

HG0FEDC-999BA

Vehicle 1 Vehicle 2 Vehicle 3

Depot 1 Depot 2 Depot 1

Depot 2

Depot 1

Vehicle 3 Vehicle 2

Vehicle 1

Fig. 10. Multi depots NEARP

6 Conclusion

The previous discussions are summarized as follows.

– The proposed method for solving the NEARP consists of a simple procedure
based on the string data model. In the framework of simulated annealing,
random applications of three transformation rules may occasionally cause
the exchange of required tasks between two trips, the move of required tasks
from one trip to another trip, and the exchange of tasks in the same trip and
so on. Because transitions of a present state in the string data model are
able to give drastic changes in solutions, fast convergence to an equilibrium
point may be achieved.

– The solutions generated by the proposed method are compared with the
solutions given by another method by making computational experiments
with the NEARP instances. In most cases, the proposed method shows good
performance.

– The proposed method is adaptable to additional conditions. Cases in which
time windows are imposed, repetitive trips of a vehicle are allowed and more
than one depot is managed at a time could all be dealt with.

– Although the proposed scheme is advantageous to complicated delivery op-
erations, the following problems should be considered in order to apply the
method to practical use.

• The effects of ‘one-to-one exchange’ and ‘delete and insert’ in the whole
string model should be analyzed theoretically.

• Applications of the tabu search and the genetic algorithm to the proposed
string model and the transformation rules should be attempted. The
particular metaheuristics fit for the string model should be found out.

• The proposed data model can be applied to NEARP with time windows,
multiple depots cases and pickup and delivery cases. The application to
these cases should be examined. However, the bench-mark problems and
the necessary data of actual delivery cases have not been obtained yet.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Practical Solution Using Simulated Annealing 149

References

1. Japan Petroleum Energy Center: Study on CO2 emissions from automobiles and
refineries. In: CO2 emissions study WG report in 4th JCAP Conference (2005),
http://www.pecj.or.jp/english/jcap/pdf/JCAP200506/2_3e.pdf

2. Kokubugata, H., Itoyama, H., Kawashima, H.: Vehicle Routing Methods for City
Logistics Operations. In: Preprint for IFAC Symposium on Transportation Sys-
tems, pp. 727–732 (1997)

3. Hasama, T., Kokubugata, H., Kawashima, H.: A Heuristic Approach Based on the
String Model to Solve Vehicle Routing Problem with Backhauls. In: Preprint for
5th Annual World Congress on Intelligent Transport Systems, No.3025 (1998)

4. Hasama, T., Kokubugata, H., Kawashima, H.: A Heuristic Approach Based on
the String Model to Solve Vehicle Routing Problem with Various Conditions. In:
Preprint for 6th World Congress on Intelligent Transport Systems, No.3027 (1999)

5. Hertz, A., Laporte, G., Mittaz, M.: A Tabu Search Heuristic for the Capacitated
Arc Routing Problem. Operations Research 48, 129–135 (2000)

6. Lacomme, P., Prins, C., Ramdane-Cherif, W.: A Genetic Algorithm for the Ca-
pacitated Arc Routing Problem and its Extensions. In: Boers, E.J.W., Gottlieb,
J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.)
EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP
2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 473–483. Springer, Heidelberg
(2001)

7. Kokubugata, H., Hirashima, K., Kawashima, H.: A Practical Solution of Capaci-
tated Arc Routing for City Logistics. In: Proceeding of 11th IFAC Symposium on
Control in Transportation Systems, No.222 (2006)

8. Prins, C., Bouchenoua, S.: A Memetic Algorithm Solving the VRP, the CARP
and more General Routing Problems with Nodes, Edges and Arcs. In: Hart, W.,
Kranogor, N., Smith, J. (eds.) Recent Advances in Memetic Algorithms, Studies
in Fuzziness and Soft Computing, vol. 166, pp. 65–85. Springer, Heidelberg (2004)

9. Oppen, J., Lokketangen, A.: Arc Routing in a Node Routing Environment. Com-
puters & Operations Research 33, 1033–1055 (2006)

10. Crescenzi, P., Kann, V.: A Compendium of NP Optimization Problem. Web site:
http://www.nada.kth.se/ viggo/wwwcompendium/node103.html

11. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by Sim-
ulated Annealing: An Experimental Evaluation, part I, graph partitioning. Oper-
ations Research 37, 865–892 (1989)

12. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by Simu-
lated Annealing: An Experimental Evaluation, part II, graph coloring and number
partitioning. Operations Research 39, 378–406 (1991)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.pecj.or.jp/english/jcap/pdf/JCAP200506/2_3e.pdf

Probabilistic Beam Search for the
Longest Common Subsequence Problem�

Christian Blum and Maria J. Blesa

ALBCOM, Dept. Llenguatges i Sistemes Informàtics,
Universitat Politècnica de Catalunya, Barcelona, Spain

{cblum,mjblesa}@lsi.upc.edu

Abstract. Finding the common part of a set of strings has many impor-
tant applications, for example, in pattern recognition or computational
biology. In computer science, this problem is known as the longest com-
mon subsequence problem. In this work we present a probabilistic beam
search approach to solve this classical problem. To our knowledge, this
algorithm is the first stochastic local search algorithm proposed for this
problem. The results show the great potential of our algorithm when
compared to existing heuristic methods.

1 Introduction

The longest common subsequence (LCS) problem is one of the classical string
problems. Given a problem instance (S, Σ), where S = {s1, s2, . . . , sn} is a set
of n strings over a finite alphabet Σ, the problem consists in finding a longest
string t∗ that is a subsequence of all the strings in S. Such a string t∗ is called
a longest common subsequence of the strings in S. Note that a string t is called
a subsequence of a string s, if t can be produced from s by deleting characters.
For example, dga is a subsequence of adagtta. The LCS problem is in general
NP-hard [1]. In case n = 2 the problem is polynomially solvable, for example, by
dynamic programming [2]. Traditional applications of this problem are in data
compression, syntactic patter recognition, and file comparison [3], whereas more
recent applications also include computational biology [4].

To our knowledge, stochastic local search methods have not been applied so far
to the LCS problem. Existing approximate methods fall into the class of deter-
ministic heuristics. Examples are simple heuristics based on sequential solution
construction (numerous references can be found in [5]), or more sophisticated
methods such as the so-called expansion algorithm [6]. The relative performance
of these heuristics depends on the characteristics of the problem instances. In
this work we propose a so-called probabilistic beam search (Pbs) approach to
tackle the LCS problem. Pbs is a stochastic local search algorithm based on solu-
tion construction and lower bounding techniques. It is a probabilistic version of
� This work was supported by grant TIN-2005-08818-C04-01 (OPLINK) of the Spanish

government, and by the Ramón y Cajal program of the Spanish Ministry of Science
and Technology of which Christian Blum is a research fellow.

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2007, LNCS 4638, pp. 150–161, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Probabilistic Beam Search for the Longest Common Subsequence Problem 151

deterministic beam search, which is an incomplete derivative of branch & bound.
In [7] we proposed a similar technique for a related problem, called the shortest
common supersequence problem (SCSP). The success of the application to the
SCSP was the motivation for applying this approach also to the LCS problem.

This paper is organized as follows. In section 2 we present the constructive
heuristic being the basis of our Pbs algorithm. In section 3 we present the
Pbs algorithm, and in section 4 we describe the experimental evaluation of our
approach. Finally, in section 5 we offer conclusions and an outlook to future
work.

2 A Sequential Construction Heuristic

In this section we outline the so-called Best-Next heuristic [8,9], which is a
fast heuristic for the LCS problem. We will use the construction mechanism
of this heuristic for our probabilistic beam search approach. Given a problem
instance (S, Σ), the Best-Next heuristic produces a common subsequence t
sequentially from left to right by appending at each construction step a letter to
t such that t maintains the property of being a common subsequence of all strings
in S. The algorithm is pseudo-coded in Algorithm 1.. In order to explain all the
components of the algorithm we need to introduce the following definitions and
notations. They all assume a given common subsequence t of the strings in S.

1. Let si = sA
i ·sB

i be the partition of si into substrings sA
i and sB

i such that t is
a subsequence of sA

i , and sB
i has maximal length. Given this partition, which

is well-defined, we introduce position pointers pi := |sA
i | for i = 1, . . . , n (see

Figure 1 for an example).
2. The position of the first appearance of a letter a ∈ Σ in a string si ∈ S after

the position pointer pi is well-defined and denoted by pa
i . In case a letter

a ∈ Σ does not appear in sB
i , pa

i is set to ∞ (see Figure 1).
3. A letter a ∈ Σ is called dominated, if exists at least one letter b ∈ Σ, a �= b,

such that pb
i < pa

i for i = 1, . . . , n;
4. Σnd

t ⊆ Σ henceforth denotes the set of non-dominated letters of the alphabet
Σ. Moreover, for all a ∈ Σnd

t it is required that pa
i < ∞. Hence, we require

that in each string si a letter a ∈ Σnd
t appears at least once after position

pointer pi.

Function ChooseFrom(Σnd
t) is used to choose at each iteration one of the letters

from Σnd
t for extending the common subsequence t. This is done by means of a so-

called greedy function. In the following we present two different greedy functions
that may be used. The first one—henceforth denoted by η1(·)—is known from
the literature (see, for example, [8]). The second one—henceforth denoted by
η2(·)—is a new development of this work. They are defined as follows:

η1(a) = min{|si| − pa
i | i = 1, . . . , n} , ∀ a ∈ Σnd

t (1)

η2(a) =

⎛

⎝
∑

i=1,...,n

pa
i − pi

|sB
i |

⎞

⎠
−1

, ∀ a ∈ Σnd
t (2)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

152 C. Blum and M.J. Blesa

sA
1︷ ︸︸ ︷

a c b c a d

sB
1︷ ︸︸ ︷

b b d

p1 pb
1 pd

1

(a) String s1

sA
2︷ ︸︸ ︷

c a b d a c d

sB
2︷︸︸︷

c d

p2 pc
2p

d
2

(b) String s2

sA
3︷ ︸︸ ︷

b a b c d

sB
3︷ ︸︸ ︷

d a a b

p3 pd
3p

a
3 pb

3

(c) String s3

Fig. 1. Given is the problem instance (S = {s1, s2, s3}, Σ = {a, b, c, d}) where s1 =
acbcadbbd, s2 = cabdacdcd, and s3 = babcddaab. Let us assume that t = abcd. (a), (b),
and (c) show the corresponding division of si into sA

i and sB
i , as well as the setting of

the pointers pi and the next positions of the 4 letters in sB
i . Note that in case a letter

does not appear in sB
i , the corresponding pointer is set to ∞. For example, as letter a

does not appear in sB
1 , we set pa

1 := ∞.

Algorithm 1. Best-Next heuristic for the LCS problem
1: input: a problem instance (S, Σ)
2: initialization: t := ε (where ε is the empty string)
3: while |Σnd

t | > 0 do
4: a := ChooseFrom(Σnd

t)
5: t := ta
6: end while
7: output: common subsequence t

In function ChooseFrom(Σnd
t) we choose a ∈ Σnd

t such that ηj(a) ≥ ηj(b) for all
b ∈ Σnd

t .1 This completes the description of the Best-Next heuristic.

3 Probabilistic Beam Search for the LCS Problem

In the following we present a probabilistic beam search (Pbs) approach for the
LCS problem. Our algorithm is based on the construction mechanism of the
Best-Next heuristic outlined in the previous section. Beam search is a classical
tree search method that was introduced in the context of scheduling [10]. The
central idea behind beam search is to allow the extension of partial solutions
(here: subsequences) in more than one way. The version of beam search that
we implemented—see Algorithm 2.—works as follows: The algorithm requires,
apart from a problem instance (S, Σ), three input parameters. kbw ∈ Z

+ is the
so-called beam width, μ ∈ R

+ ≥ 1 is a parameter that is used to determine the
number of children that can be chosen at each step, and tbsf is the best solution
found so far. At each step of the algorithm is given a set B of subsequences
which is called the beam. At the start of the algorithm B only contains the
empty string ε (that is, B := {ε}). Let C denote the set of all possible extensions

1 Note that for each application of the Best-Next heuristic, we either use j = 1 or
j = 2.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Probabilistic Beam Search for the Longest Common Subsequence Problem 153

Algorithm 2. Probabilistic beam search (Pbs) for the LCS problem
1: input: a problem instance (S, Σ), kbw, μ, tbsf

2: Bcompl := {ε}, B := {ε}
3: while B �= ∅ do
4: C := Children of(B)
5: B := ∅
6: for k = 1, . . . , min{	μ · kbw
, |C|} do
7: 〈t, a〉 := Choose From(C)
8: t := ta
9: if UB(t) = |t| then

10: Bcompl := Bcompl ∪ {t}
11: if |t| > |tbsf| then tbsf := t end if
12: else
13: if UB(t) ≥ |tbsf| then B := B ∪ {t} end if
14: end if
15: C := C \ {t}
16: end for
17: B := Reduce(B,kbw)
18: end while
19: output: argmax{|t| | t ∈ Bcompl}

(children) of the subsequences in B.2 At each step, 	μ · kbw
 different extensions
from C are selected; each selection step is either performed probabilistically,
or deterministically. A chosen extension, which is also a subsequence, is either
stored in set Bcompl in case it is a complete solution, or—in case its upper bound
value UB(·) is greater than the length of the best-so-far solution tbsf—it is stored
in the new beam B. At the end of each step the new beam B is reduced in
case it contains more than kbw (the beam width) subsequences. This is done by
evaluating the subsequences in B by means of the upper bound UB(·) mentioned
already above, and by subsequently selecting the kbw subsequences with the
greatest upper bound values.

In the following we explain some aspects of Algorithm 2. in more detail. The al-
gorithm uses three different functions. Given the current beam B as input, func-
tion Children of(B) produces the children (extensions) of all the subsequences in
B in the form of a set C of tuples 〈t, a〉 for each pair t ∈ B and a ∈ Σnd

t .
The second function—Choose From(C)—is used for choosing one of the (re-

maining) children in C. This is done by means of one of the greedy functions
outlined in the previous section. However, note that the weights given by a
greedy function are only meaningful for the comparison of two children 〈t, a〉
and 〈t, b〉, while they are meaningless for the comparison of two children 〈t, a〉
and 〈z, b〉 (where t �= z). We solved this problem as follows. First, instead of
the weights given by a greedy function, we use the corresponding ranks. More

2 Remeber that the construction mechanism of the Best-Next heuristic is based on
extending a subsequence t by appending one letter from Σnd

t .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

154 C. Blum and M.J. Blesa

in detail, given all children {〈t, a〉 | a ∈ Σnd
t } descending from a subsequence t,

the child 〈t, b〉 with ηj(〈t, b〉) ≥ ηj(〈t, a〉) for all a ∈ Σnd
t receives rank 1, denoted

by rj(〈t, b〉) = 1.3 The child with the second highest greedy weight receives rank
2, and so on. Note that here we extend the notation ηj(a) (as introduced in the
previous section) to ηj(〈t, a〉), with the same meaning. Next, for evaluating a
child 〈t, a〉 we use the sum of the ranks of the greedy weights that correspond to
the construction steps performed to construct subsequence ta, that is

ν(〈t, a〉) := rj(〈ε, t1〉) +

⎛

⎝
|t|−1∑

i=1

rj(〈t1...ti, ti+1〉)

⎞

⎠ + rj(〈t, a〉) , (3)

where ε is the empty string, and ti denotes the letter on position i in subsequence
t. Morever, t1...ti denotes the substring of t from position 1 to postion i. In
contrast to the greedy function weights, these newly defined ν(·)-values can be
used to compare children descending from different subsequences, which is done
as follows. Given the set of children C, each 〈t, a〉 ∈ C is assigned the following
probability:

p(〈t, a〉) :=
ν(〈t, a〉)∑

〈z,b〉∈C ν(〈z, b〉) , ∀ 〈t, a〉 ∈ C (4)

When function Choose From(C) is called, it is first decided whether to perform
the choice of a child determinstically, or probabilistically. This is done by drawing
a random number q ∈ [0, 1] and comparing it to a parameter 0 ≤ d ≤ 1. If q < d,
the child 〈t, a〉 to be returned by function Choose From(C) is selected such that
〈t, a〉 := argmax{p(〈z, b〉) | 〈z, b〉 ∈ C}. Otherwise, the child to be returned
is selected by roulette-wheel-selection according to the probabilities defined in
Equation 4.

The last function used by the Pbs algorithm is Reduce(B,kbw). In case |B| >
kbw, this function removes from B step-by-step those subsequences t that have
an upper bound value UB(t) smaller or equal to the upper bound value of all the
other subsequences in B. The removal process stops once |B| = kbw. Remember
that kbw is the beam width of the Pbs algorithm, that is, the maximum number
of subsequences that the algorithm is allowed to consider for extension.

Finally, we outline the upper bound function UB(·) that we used in our al-
gorithm. Remember that a given subsequence t splits each string si ∈ S into
a first part sA

i and into a second part sB
i , that is, si = sA

i · sB
i (see previous

section). Henceforth, |sB
i |a denotes the number of occurences of letter a in sB

i

for all a ∈ Σ. Then,

UB(t) := |t| +
∑

a∈Σ

min{|sB
i |a | i = 1, . . . , n} . (5)

In words, for each letter a ∈ Σ we take the minimum of the occurences of a
in sB

i , i = 1, . . . , n. Summing up these minima and adding the result to the
length of t results in the upper bound. This completes the description of the
Pbs algorithm.
3 Remember that j ∈ {1, 2} indicates the used greedy function.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Probabilistic Beam Search for the Longest Common Subsequence Problem 155

3.1 Deterministic Versus Probabilistic Beam Search

In this work we study two different ways of using the Pbs algorithm: (1) De-
terministic beam search, and (2) probabilistic beam search used in a multi-start
fashion.

Deterministic beam search—henceforth simply denoted by Bs—is obtained
from algorithm Pbs by setting d = 1. With this setting each choice of a child from
C is done deterministically. Moreover, the best-so-far solution that is required
as input of Pbs is set to the empty string ε, that is, tbsf := ε.

A more interesting use of Pbs is achieved by a setting of d < 1, and by using
Pbs in a multi-start fashion (see Algorithm 3.). The resulting algorithm—see
Algorithm 3.—is denoted by Ms-Pbs. As stopping condition we use a maximum
number of iterations, that is, calls of Algorithm 2.

Algorithm 3. Multi-start probabilistic beam search (Ms-Pbs)
1: input: a problem instance (S, Σ), kbw, μ
2: tbsf := ε
3: while stopping conditions not satisfied do
4: t := Pbs((S, Σ), kbw, μ, tbsf) {see Algorithm 2.}
5: if |t| > |tbsf| then tbsf := t
6: end while
7: output: tbsf

4 Experimental Evaluation

Apart from Ms-Pbs and Bs, we also included the following algorithms in the
experimental evaluation. The Best-Next heuristic was applied with greedy
function η1(·) (see Equation 1), as well as with greedy function η2(·) (see Equa-
tion 2). The former version is henceforth denoted by Bn(1) and the latter one by
Bn(2). Morever, we applied to all instances the expansion algorithm [6], hence-
forth denoted by Exp. We implemented all these algorithms in ANSI C++ using
GCC 3.2.2 for compiling the software. Our experimental results were obtained
on a PC with an AMD64X2 4400 processor and 4 Gb of memory.

4.1 Parameter Setting of Probabilistic Beam Search

Remember that Algorithm 2. has 4 paramters: kbw is the beam width, that is,
the maximum number of subsequences that the algorithm is allowed to keep at
any time; μ is used to determine the number of children that can be chosen
from set C at each step of the algorithm; d is the probability that determines
the balance between probabilistic and deterministic choices of children from C;4

finally, we have to decide between greedy functions η1(·) and η2(·).
4 When d = 0 the algorithm is completely random, while a setting of d = 1 results in

deterministic beam search.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

156 C. Blum and M.J. Blesa

For the experimental evaluation presented in this paper we decided to fix the
parameters after an initial tuning by hand. A thorough tuning process is left
for future work. We decided for a setting of kbw = 10 and μ = 3.5 Concerning
the choice of the greedy function, we decided for η1(·) for the application to the
instances of Set1, whereas we chose η2(·) for the instances of Set2 (see Section 4.2
for a description of the problem instances). As we will explain in the following
section, η1(·) seems to work much better than η2(·) for instances from Set1,
whereas the opposite is the case for instances of Set2. Finally, after tuning by
hand we chose a setting of d = 0.8, which means that on average 20% of the
choices of children from set C are performed probabilistically.

4.2 Benchmark Instances

Two different sets of benchmark instances have been used in the experimentation.
The instances of the first set—henceforth denoted by Set1—were produced such
that the length of an optimal solution is known. All instances of Set1 have
the following characteristics: Each of them consists of 10 strings of length l ∈
{100, 200, . . . , 1000}, derived from an alphabet Σ, where |Σ| ∈ {2, 4, 8, 24}. For
each combination of l and |Σ| we produced randomly 10 instances as follows.
The first 2 strings of each instance are randomly generated. Then, dynamic
programming is applied in order to produce the longest common subsequence
t∗ of these 2 strings. The 8 remaining strings of an instance are produced on
the basis of t∗, which is extended by adding randomly chosen letters from Σ at
random positions until length l is reached. As there are 40 combinations of l and
|Σ|, we produced a total of 400 instances. Note that due to the above outlined
construction mechanism, the length of an optimal solution of an instance I is
|t∗|.

The second set of instances—henceforth denoted by Set2—was generated quite
differently. Given h ∈ {100, 200, . . . , 1000} and Σ (where |Σ| ∈ {2, 4, 8, 24}), an
instance is produced as follows. First, a string s of length h is produced randomly
from the alphabet Σ. The string s is in the following called base string. Each
instance contains again 10 strings. Each of these strings is produced from the
base string s by traversing s and by deciding for each letter with a probabilitiy
of 0.1 whether to remove it, or not. Note that the 10 strings of such an instance
are not necessarily of the same length. As we produced 10 instances for each
combination of h and |Σ|, 400 instances were generated in total. Note that the
values of optimal solutions of these instances are unknown. However, a lower
bound is obtained as follows. While producing the 10 strings of an instance, we
record for each position of the base string s, whether the letter at that position
was removed for the generation of at least one of the 10 strings. The number
of positions in s that were never removed constitutes the lower bound value
henceforth denoted by LBI with respect to an instance I.

5 The only exception occurs when instances with |Σ| = 2 are concerned. In this case
we chose μ = 1.5, because a setting of μ = 2 would mean that at each step all
children of C are selected.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Probabilistic Beam Search for the Longest Common Subsequence Problem 157

4.3 Results for Set1

We applied each of the 5 algorithms exactly once to each problem instance.
The Ms-Pbs algorithm was applied with 100 applications of algorithm Pbs. We
present the results averaged over the 10 instances for each combination of l (the
length of the 10 strings per instance), and the alphabet size |Σ|. Two measures
are presented:

1. The (average) length of the solutions, expressed in percent with respect to
the length of the optimal solutions. That is, 100% performance is achieved
when the length of a solution is equal to the length of an optimal solution.

2. The computation time of the algorithms. In case of Ms-Pbs, this refers to
the time the best solution was found within the 100 applications of algorithm
Pbs (averaged over the 10 instances of the same type).

The results are shown graphically in Figure 2. The graphics on the left hand side
show the algorithm performance (first measure), and the graphics on the right
hand side show the computation times. The results allow us to draw the fol-
lowing conclusions. First, the performance of Bn(1) and Exp strongly decreases
with increasing alphabet size. Surprisingly, the performance of the other three
algorithms increases with increasing alphabet size. Second, algorithm Ms-Pbs is
clearly the winner of the comparison. When |Σ| > 4, the algorithm nearly always
finds the optimal solutions, regardless of l. Moreover, when the alphabet size is
rather small and l is large the algorithm is clearly better than the 4 competitors.
In particular, Ms-Pbs is never worse than Bs, its deterministic version. With re-
spect to computation times, algorithm Exp clearly uses much more computation
time than the other approaches, while the heuristics are much faster than the
other approaches. Algorithms Bs and Ms-Pbs produce their results generally
within a few seconds.

4.4 Results for Set2

We applied each of the 5 algorithms exactly once to each problem instance. The
Ms-Pbs algorithm was again applied with 100 applications of algorithm Pbs. We
present the results averaged over the 10 instances for each combination of h (the
length of the base string that was used to produce an instance), and the alphabet
size |Σ|. Apart from the average computation time (see previous section) we
present the following measure: The (average) length of the solutions expressed
in percent deviation from the respective lower bounds, which is computed as
follows: (

f

LBI
− 1

)
· 100 , (6)

where f is the length of the solution achieved by the respective algorithm. The
results are shown graphically in Figure 3. The graphics on the left hand side
show again the algorithm performance (in percentage deviation from the lower
bound), and the graphics on the right hand side show the computation times.
The following observations are of interest. First, in contrast to the results for

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

158 C. Blum and M.J. Blesa

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

A
lg

or
ith

m
 p

er
fo

rm
an

ce
 (

in
 %

)

String length (l)

 BN(1)
 BN(2)

 EXP
 BS

 MS-PBS

(a) |Σ| = 2, results

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100 200 300 400 500 600 700 800 900 1000

C
om

pu
ta

tio
n

tim
e

(in
 s

ec
)

String length (l)

 BN(1)
 BN(2)

 EXP
 BS

 MS-PBS

(b) |Σ| = 2, computation times

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

A
lg

or
ith

m
 p

er
fo

rm
an

ce
 (

in
 %

)

String length (l)

 BN(1)
 BN(2)

 EXP
 BS

 MS-PBS

(c) |Σ| = 4, results

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 100 200 300 400 500 600 700 800 900 1000

C
om

pu
ta

tio
n

tim
e

(in
 s

ec
)

String length (l)

 BN(1)
 BN(2)

 EXP
 BS

 MS-PBS

(d) |Σ| = 4, computation times

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

A
lg

or
ith

m
 p

er
fo

rm
an

ce
 (

in
 %

)

String length (l)

 BN(1)
 BN(2)

 EXP
 BS

 MS-PBS

(e) |Σ| = 8, results

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 200 300 400 500 600 700 800 900 1000

C
om

pu
ta

tio
n

tim
e

(in
 s

ec
)

String length (l)

 BN(1)
 BN(2)

 EXP
 BS

 MS-PBS

(f) |Σ| = 8, computation times

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

A
lg

or
ith

m
 p

er
fo

rm
an

ce
 (

in
 %

)

String length (l)

 BN(1)
 BN(2)

 EXP
 BS

 MS-PBS

(g) |Σ| = 24, results

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100 200 300 400 500 600 700 800 900 1000

C
om

pu
ta

tio
n

tim
e

(in
 s

ec
)

String length (l)

 BN(1)
 BN(2)

 EXP
 BS

 MS-PBS

(h) |Σ| = 24, computation times

Fig. 2. Results for the instances of Set1

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Probabilistic Beam Search for the Longest Common Subsequence Problem 159

-60

-40

-20

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

D
ev

ia
tio

n
fr

om
 lo

w
er

 b
ou

nd
 (

in
 %

)

Base string length (h)

 BN(1)
 BN(2)

 EXP
 BS

 MS-PBS

(a) |Σ| = 2, results

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100 200 300 400 500 600 700 800 900 1000

C
om

pu
ta

tio
n

tim
e

(in
 s

ec
)

Base string length (h)

 BN(1)
 BN(2)

 EXP
 BS

 MS-PBS

(b) |Σ| = 2, computation times

-60

-40

-20

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

D
ev

ia
tio

n
fr

om
 lo

w
er

 b
ou

nd
 (

in
 %

)

Base string length (h)

 BN(1)
 BN(2)

 EXP
 BS

 MS-PBS

(c) |Σ| = 4, results

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 100 200 300 400 500 600 700 800 900 1000

C
om

pu
ta

tio
n

tim
e

(in
 s

ec
)

Base string length (h)

 BN(1)
 BN(2)

 EXP
 BS

 MS-PBS

(d) |Σ| = 4, computation times

-60

-40

-20

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

D
ev

ia
tio

n
fr

om
 lo

w
er

 b
ou

nd
 (

in
 %

)

Base string length (h)

 BN(1)
 BN(2)

 EXP
 BS

 MS-PBS

(e) |Σ| = 8, results

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 100 200 300 400 500 600 700 800 900 1000

C
om

pu
ta

tio
n

tim
e

(in
 s

ec
)

Base string length (h)

 BN(1)
 BN(2)

 EXP
 BS

 MS-PBS

(f) |Σ| = 8, computation times

-60

-40

-20

 0

 20

 40

 60

 80

 100

 100 200 300 400 500 600 700 800 900 1000

D
ev

ia
tio

n
fr

om
 lo

w
er

 b
ou

nd
 (

in
 %

)

Base string length (h)

 BN(1)
 BN(2)

 EXP
 BS

 MS-PBS

(g) |Σ| = 24, results

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100 200 300 400 500 600 700 800 900 1000

C
om

pu
ta

tio
n

tim
e

(in
 s

ec
)

Base string length (h)

 BN(1)
 BN(2)

 EXP
 BS

 MS-PBS

(h) |Σ| = 24, computation times

Fig. 3. Results for the instances of Set2

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

160 C. Blum and M.J. Blesa

instance set Set1, algorithms Bn(1) and Exp perform (in comparison) much
better on the instances of Set2. Algorithm Exp is even slightly better than Ms-

Pbs when |Σ| ≥ 4 and h is large. However, Exp uses much more computation
time than Ms-Pbs. Second, heuristic Bn(1) is clearly better than heuristic Bn(2)
on this instance set. Concerning the beam search approaches, Ms-Pbs is again
consistently better than Bs, which shows the potential of a probabilistic beam
search approach. However, especially when the alphabet size grows and h is
large, there is room for improvement, which is shown by the fact that Exp is
slightly better than Ms-Pbs in these cases. This might also be an indication
that Ms-Pbs is not proporly tuned for these combinations of |Σ| and h.

5 Conclusions and Future Work

In this work we presented a probabilistic beam search approach for the longest
common subsequence problem, which is one of the classical string problems with
applications in pattern recognition and computational biology. We generated
two sets of each 400 problem instances. In summary, the results indicated that
the probabilistic beam search algorithm is clearly the best algorithm for the first
set of instances, whereas it is—with the current parameter settings—slightly
inferior by the expansion algorithm on certain instances from the second set.
Concerning computation times, the probabilistic beam search approach needs
much less computation time for reaching—in most cases improving—the quality
level of the expansion algorithm.

Future work will focus on two lines. First, we intend to improve probabilistic
beam search in particular for the cases in which it performed slightly worse
than the expansion algorithm. Possible directions include the implementation
of a lookahead mechanism and the addition of a learning component, as for
example in Beam-ACO [11]. The second line of future work concerns the problem
instances. We plan to test our algorithms also for instances with a varying string
number. In this study we only regarded instances with 10 strings. Moreover, we
would like to learn the reasons for the different behaviour of the greedy functions
and the expansion algorithm when comparing between the two sets of differently
generated problem instances.

References

1. Maier, D.: The complexity of some problems on subsequences and supersequences.
Journal of the ACM 25, 322–336 (1978)

2. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

3. Aho, A., Hopcroft, J., Ullman, J.: Data structures and algorithms. Addison-Wesley,
Reading, MA (1983)

4. Smith, T., Waterman, M.: Identification of common molecular subsequences. Jour-
nal of Molecular Biology 147(1), 195–197 (1981)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Probabilistic Beam Search for the Longest Common Subsequence Problem 161

5. Bergeroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence
algorithms. In: Proceedings of SPIRE 2000 – 7th International Symposium on
String Processing and Information Retrieval, pp. 39–48. IEEE press, Los Alamitos
(2000)

6. Bonizzoni, P., Della Vedova, G., Mauri, G.: Experimenting an approximation al-
gorithm for the LCS. Discrete Applied Mathematics 110, 13–24 (2001)

7. Blum, C., Cotta, C., Fernández, A.J., Gallardo, J.E.: A probabilistic beam search
algorithm for the shortest common supersequence problem. In: C.C., et al. (eds.)
Proceedings of EvoCOP 2007 – Seventh European Conference on Evolutionary
Computation in Combinatorial Optimisation. LNCS, vol. 4446, Springer, Heidel-
berg (2007) (In press)

8. Fraser, C.B.: Subsequences and supersequences of strings. PhD thesis, University
of Glasgow (1995)

9. Huang, K., Yang, C., Tseng, K.: Fast algorithms for finding the common sub-
sequences of multiple sequences. In: Proceedings of the International Computer
Symposium, pp. 1006–1011. IEEE press, Los Alamitos (2004)

10. Ow, P.S., Morton, T.E.: Filtered beam search in scheduling. International Journal
of Production Research 26, 297–307 (1988)

11. Blum, C.: Beam-ACO—Hybridizing ant colony optimization with beam search:
An application to open shop scheduling. Computers & Operations Research 32(6),
1565–1591 (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Bidirectional Greedy Heuristic for the
Subspace Selection Problem�

Dag Haugland

Department of Informatics, University of Bergen, Bergen, Norway
dag.haugland@ii.uib.no

Abstract. The Subspace Selection Problem (SSP) amounts to select-
ing t out of n given vectors of dimension m, such that they span a
subspace in which a given target b ∈ �m has a closest possible approxi-
mation. This model has numerous applications in e.g. signal compression
and statistical regression. It is well known that the problem is NP-hard.
Based on elements from a forward and a backward greedy method, we
develop a randomized search heuristic, which in some sense resembles
variable neighborhood search, for SSP. Through numerical experiments
we demonstrate that this approach has good promise, as it produces good
results at modest computational cost.

Keywords: Subspace selection, dimension reduction, greedy methods,
computational experiments.

1 Introduction

The Subspace Selection Problem (SSP) is a sparse approximation problem with
applications in statistical regression, signal compression and other fields. It ad-
dresses the challenge of representing a high-dimensional target vector in low-
dimensional space while minimizing the loss of information. As it is probably
best understood in a signal compression context, we use this setting to intro-
duce the problem.

Representing a sampled digital signal of dimension m in terms of two arrays of
significantly smaller length, possibly with some information loss, can be accom-
plished by means of a large collection of elementary signal vectors of dimension
m. By selecting t of the vectors, where t < m/2, and assigning a weight to each
of them, a compressed version of the sampled signal is represented by the vec-
tor indices and the weights. When transmitted over a communication channel,
transmission time is hence reduced if the t index and weight pairs are sent. Given
that the collection of elementary signals are available at the reception side as
well, the transmitted information can be used to restore an approximation to
the sampled signal. The quality of the restored signal, however, depends largely
on how the selection was made.

In this work, the elementary vectors are referred to as atoms, and a matrix in
which the atoms are the columns is referred to as a dictionary. For given integers
� Supported by The Research Council of Norway under contract 160233/V30.

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2007, LNCS 4638, pp. 162–176, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Bidirectional Greedy Heuristic for the Subspace Selection Problem 163

m, n and t ≤ min{m, n}, target vector b ∈ �m, and dictionary A ∈ �m×n, the
problem is to find a linear combination of (at most) t columns of A such that
its distance from b is minimized. An overview of applications of variants of
this problem, along with theoretical results and algorithms, can be found in the
monograph of Miller [1]. In signal compression applications, dictionaries are often
overcomplete, which means that they have rank m and more than m columns.
This assumption is however not general, applications to statistical regression [1]
and classification (Couvreur and Bresler [2]) include cases where n < m.

Dimension reduction based on dictionaries is somehow related to traditional
signal compression techniques based on orthogonal transformations of the target
vector (transform coding). If m = n, A is orthogonal, and most components of
x = AT b are small in absolute value, an approximation to b is found as Ax̃.
Here x̃ equals x in the t components with largest absolute value, whereas it
is zero in all other components. Hence the target b is represented by the sparse
vector x̃, implying an information loss depending on the choice of A. In Principal
Component Analysis, which can be seen as a variant of transform coding, the
transformation A is not given as an external parameter, but is rather based on
the singular value decomposition of a matrix whose columns are the targets to
be compressed.

The subspace selection problem is distinguished from transform coding in that
the optimal solution is not identified solely by the magnitude of the atom coeffi-
cients. Transform coding can hence be understood as a simple greedy approach
to the subspace selection problem, where the ordering of the atoms is fixed.

Owing to the computational intractability of the problem, the subspace se-
lection problem has traditionally been attacked by heuristic methods aiming
for solutions that are nearly optimal. Noteworthy among these are the variants
of forward greedy algorithms by Mallat and Zhang [3], Pati et al. [4], Gharavi-
Alkhansari and Huang [5], and the method of Natarajan [6]. All these approaches
consider the distance to be given by the Euclidean measure, whereas the method
by Haugland and Storøy [7] is a greedy algorithm based on a unit norm distance.
A common feature of the forward greedy approaches is that a current subset of
atoms, initialized to the empty set, is gradually extended until its cardinality
becomes t. Since the set extension is non-trivial, the methods differ in the way
this step is carried out. Opposed to the forward methods is the backward greedy
approach suggested in [2]. This method, which is valid if the dictionary is not
overcomplete, starts with accepting all n > t atoms, and removes one in each
iteration until only t remains.

In this paper, the simple ideas of forward and backward greedy algorithms
are combined. We develop a bidirectional greedy heuristic that systematically
alternates between moves in its primary neighborhood, which correspond to ex-
tensions by one, and moves in the secondary neighborhood (reductions by one).
Likewise, we suggest a method where the roles of the neighborhoods are inter-
changed. This leads to two variants of a bidirectional greedy heuristic, distin-
guished by their primary search direction. An extension of the idea, where the
approval of secondary moves is randomized, is also presented.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

164 D. Haugland

The paper is organized as follows: In the next section, we introduce some
notation and background material, and define the problem in rigorous terms. In
Sect. 3, we study how to extend or reduce a subset by one atom. Our heuristics
utilizing such moves are developed in Sect. 4, and numerical experiments are
given in Sect. 5.

2 Preliminaries

Let the columns of the dictionary A ∈ �m×n be denoted a1, . . . , an ∈ �m, and
assume that any set of m columns are linearly independent. For any S ⊆ N we
let VS denote the subspace spanned by

{
aj : j ∈ S

}
, and we let PS(b) denote the

projection of b in VS . That is, PS(b) =
∑

j∈S ajxj where x solves the least squares

problem minx∈�S

∥∥∥
∑

j∈S ajxj − b
∥∥∥

2
. Throughout the paper, we let ‖·‖ and 〈·, ·〉

denote the Euclidean norm and inner product, respectively, and we assume that
the target and the atoms are normalized, i.e. ‖a1‖ = · · · = ‖an‖ = ‖b‖ = 1. We
let I denote the identity matrix and ei the ith unit vector which dimensions are
consistent with the context. If v is a vector, we let vi denote the ith component
of v.

The goal is to find an S ⊆ N , where |S| ≤ t, such that the distance between b
and PS(b) is minimized, and hence the (Euclidean) Subspace Selection Problem
can be defined as

min
S⊆N

{‖PS(b) − b‖ : |S| ≤ t} [SSP] .

The problem is frequently referred to as the subset selection problem, but is
rephrased here for better distinction from other combinatorial optimization prob-
lems consisting in subset selection. By a reduction from Exact Cover by 3-sets
(Garey and Johnson [8], pp. 221), Natarajan [6] proved that [SSP] is NP-hard.
This has drawn the attention to various heuristic approaches, to be discussed
briefly as follows.

The Matching Pursuit algorithm [3], relies on estimations b̃ of the projection
PS(b). In each iteration, the algorithm picks the j ∈ N maximizing

∣∣∣
〈
b − b̃, aj

〉∣∣∣,
and updates its weight. As it may happen that the maximum is attained for some
j ∈ S, the method does not necessarily extend S in each iteration, and examples
can be found (see Chen et al. [9]) where the method does not converge.

The shortcoming of Matching Pursuit is to some extent accounted for in
the Orthogonal Matching Pursuit (OMP) algorithm [4]. In each iteration, the
residual b − PS(b) is computed by solving the associated least-squares problem.
Then

∣∣〈aj , b − PS(b)
〉∣∣ is maximized with respect to j ∈ N \ S in order to find

the entering atom. Hence finite convergence is guaranteed.
The selection criterion in OMP does not necessarily result in the best ex-

tension by one. The forward greedy heuristic [6], or Fully Orthogonal Matching
Pursuit [5], is identical to OMP, except that the selection criterion is modified
such that it corresponds to an optimal extension by one. Details on this are given
in the next section.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Bidirectional Greedy Heuristic for the Subspace Selection Problem 165

The backward greedy algorithm of Couvreur and Bresler [2] contrasts the
forward methods by initially accepting all atoms, and next eliminate one in each
of n− t iterations. The elimination criterion corresponds to an optimal reduction
by one. An important prerequisite for this approach is that n ≤ m, i.e. only non-
overcomplete dictionaries can be handled. The reason for this is that in the case
where A is overcomplete, any column set the deletion of which leaves A with
full rank, can be eliminated. Hence the first n − m iterations give no increase in
the objective function, and the elimination criterion is ambiguous as it gives no
indication of what atoms to leave out.

Under the assumption that n ≤ m, it is proved in [2] that the backward greedy
algorithm is exact in caseswhere the optimal objective function value is sufficiently
small. More precisely, if b is within an ε-neighborhood of a linear combination of
no more than t atoms, the algorithm returns exactly this combination. Computing
the bound ε is however conjectured to be no easier than solving the problem.

2.1 Basic Concepts from Numerical Linear Algebra

For readers unfamiliar with the matrix computation operations used in this work,
we summarize them briefly in this section. Details can be found in e.g. the book
of Golub and Van Loan [10].

Let (j1, . . . , jn) be a permutation of N , and let Π be the corresponding column
permutation matrix. If Q ∈ �m×m and R = (rij) such that QR = AΠ , QT Q = I
and for some non-negative integer k ≤ m we have rij = 0 ∀j = 1, . . . , k; i =
j + 1, . . . , m, then we refer to QR as a partial QR-decomposition of AΠ . The
objective function value corresponding to the selection of atoms S = {j1, . . . , jk}
is found as the sum of the squares of the m − k last components of QT b. The
first k columns of Q are an orthonormal basis for the selected subspace VS .

If v ∈ �m and Hk(v) = I − 2
uT uuuT , where

u =
(
0, . . . , 0, vk ±

√∑m
i=k v2

i , vk+1, . . . , vm

)T

∈ �m, then Hk(v) is said to be a

Householder reflection. It is readily seen that Hk(v) = HT
k (v) and HT

k (v)Hk(v) =
I, and that Hk(v) maps v to a vector with zeros in positions k + 1, . . . , m. More
precisely, Hk(v)v = w, where w1 = v1, . . . , wk−1 = vk−1, wk = ∓

√∑m
i=k v2

i , and
wk+1 = · · · = wm = 0.

Hence partial QR-decompositions of AΠ are obtained by applications of
Householder reflections. By careful selections of vectors v1, . . . , vk, we get ze-
ros below the diagonal in the k first columns of Hk(vk) · · · H1(v1)AΠ = R,
and thereby QT = Hk(vk) · · · H1(v1), which means that Q = H1(v1) · · · Hk(vk).
Actually, v1 is set equal to aj1 , v2 is set to H1(v1)aj2 , etc.

A matrix Gik(v), which is identical to the identity matrix except that it has the
value vi√

v2
i +v2

k

in positions (i, i) and (k, k), and the values vk√
v2

i +v2
k

and −vk√
v2

i +v2
k

in positions (i, k) and (k, i), respectively, is referred to as a Givens rotation.
Clearly, Gik(v) = −GT

ik(v) and GT
ik(v)Gik(v) = I. If w = Gik(v)v, then wj = vj

∀j ∈ {1, . . . , m} \ {i, k}, wi =
√

v2
i + v2

k, and wk = 0. Hence Gik(v) transforms
v to a vector with a zero in position k.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

166 D. Haugland

A matrix R ∈ �m×n is an upper Hessenberg matrix if rij = 0 ∀i = j +
2, . . . , m; j = 1, . . . , min{n, m − 2}, which means that R has zeros below its
lower subdiagonal. A set of Givens rotations are useful for transforming an upper
Hessenberg matrix to an upper triangular matrix.

3 Extension and Reduction Neighborhoods

Any feasible solution to [SSP] is identified by a set of atoms S = {j1, . . . , jk}
⊆ N . Associated with such solutions, our heuristic considers the neighborhoods
N+(S) = {S+ = S ∪ {j}, j ∈ N \ S} and N−(S) = {S− = S \ {j}, j ∈ S}
and the corresponding subproblems defining best moves:

min
j∈N\S

∥∥b − PS∪{j}(b)
∥∥ [SSP+(S)]

min
j∈S

∥∥b − PS\{j}(b)
∥∥ [SSP−(S)]

Note that the union of the neighborhoods actually corresponds to the single-bit-
flip neighborhood (the Hamming distance 1 neighborhood). Conditions useful
for identifying the best moves are given next.

3.1 Extending the Solution

Assume the partial QR-decomposition QR = AΠ , where Q =
(
q1, . . . , qm

)
,

R =
(
rj1 , . . . , rjn

)
, and the associated residual ρS = b − PS(b).

Proposition 1. If k < m, then j+ ∈ N \S is an optimal solution to [SSP+(S)]
if and only if

j+ ∈ arg max
j∈N\S

〈ρS , aj〉2

1 −
∑k

�=1〈q�, aj〉2
. (1)

Proof. Since
{
q1, . . . , qk

}
is an orthonormal basis for VS , and k < m, there

exists for all j ∈ N \ S some q(j) ∈ �m such that
{
q1, . . . , qk, q(j)

}
is an

orthonormal basis for VS∪{j}. We have that
∥∥ρS∪{j}

∥∥ =
∥∥b − PS∪{j}(b)

∥∥2 =
‖b‖2 −

∑k
�=1〈b, q�〉2 − 〈b, q(j)〉2, which is minimized if and only if j is chosen

such that 〈b, q(j)〉2 is maximized. But

aj = 〈aj , q(j)〉q(j) +
k∑

�=1

〈aj , q�〉q�,

and since
∥∥aj

∥∥ = 1, we get by taking the inner product of b and the above
equation

〈b, q(j)〉2 =

(
〈b, aj〉 −

∑k
�=1〈aj , q�〉〈b, q�〉

)2

〈aj , q(j)〉2 =

〈
aj , b −

∑k
�=1〈b, q�〉q�

〉2

〈aj , q(j)〉2

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Bidirectional Greedy Heuristic for the Subspace Selection Problem 167

=
〈aj , ρS〉2

1 −
∑k

�=1〈aj , q�〉2
.

�
In the case of a normalized dictionary, this is precisely the expansion criterion
applied in the greedy algorithm in [6], although no proof of its optimality was
given. In [4], however, the enumerator of (1) is maximized.

When adding j+ to S, we have to update the QR-decomposition. This is
done by applying a Householder reflection, exactly as in a single iteration of the
QR-algorithm for the linear least-squares problem (see e.g. [10]).

Since 〈q�, aj〉 = rj
� , the expansion criterion (1) suggests that the algorithm

stores ρS and R. The Householder reflection in question zeros out all the m−k−1
last entries of QT aj+

, while the first k entries remain unchanged. Once the
entering j+ is found, we compute the corresponding reflection, H , and overwrite
R by applying H to all columns rj where j ∈ N \ S. The reflection does not
alter rj1 , . . . , rjk .

Let α = QT b, and note that

PS(b) =
k∑

�=1

〈b, q�〉q� =
k∑

�=1

α�q
� (2)

and

ρS =
m∑

�=k+1

〈b, q�〉q� =
m∑

�=k+1

α�q
� . (3)

By the initial assignments Q = I and α = b, the representations (2)-(3) can
be maintained by applying H also to α. Because 〈q�, aj〉 = rj

� and 〈ρS , aj〉 =∑m
�=k+1 rj

�α�, the best word to enter is computed through

j+ ∈ arg max
j∈N\S

(∑m
�=k+1 rj

�α�

)2

1 −
∑k

�=1

(
rj
�

)2 . (4)

When moving forward, we shall also maintain some variables that turn out to
facilitate the backward move. Reeves [11] has shown (see the next section) that

the matrix Y =
(
y1, . . . , yk

)
=

(
R̃−T

0

)
∈ �m×k, where R̃ denotes the upper

triangular submatrix consisting of the elements in the first k rows and columns
of R, is useful for this purpose. The superscript −T means taking the transpose
of the inverse. Also the weights x ∈ �k satisfying PS(b) =

∑k
�=1 aj�x� will be

computed for the purpose of the backward move.
Since the first k columns of R̃ are not affected by inclusion of the (k + 1)st

atom, we do not have to recompute the k first rows of Y either. Row k + 1 is
found by simply solving a triangular linear system of equations. Finally, it is
easy to show [10] that x = Y T α.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

168 D. Haugland

Algorithm 1. forward(δ, S, z)
k ← |S|
find a j+ satisfying (4)

if
��m

�=k+1 rj+

� α�

�2
≤ δ

�
1 −

�k
�=1

�
rj+

l

�2
�

then

return false
k ← k + 1, jk ← j+, S ← S ∪ {jk}
H ← Hk

�
rjk
�

R ← HR, α ← Hα
R̃ ← triangular submatrix of R
Y ← (Y, 0), solve R̃u = ek for u, and let the kth row of Y be uT

x ← Y T α
z ←

�m
�=k+1 α2

�

return true

Algorithm 1. performs a forward greedy move, along with all necessary updates.
For reasons to be made clear in Sect. 4, we equip the algorithm with the ability
to reject a forward move if the objective function reduction is below a given
threshold δ. Input parameters are δ and the current solution S, and the updated
solution S and its corresponding objective function value z are output via the
parameter list. A Boolean value telling whether or not a move was executed is
returned. We assume that all other algorithms are notified about assignments to
variables α, x, Y , and R.

Construction of H and the application of it to a single column takes O(m)
time, and the reflection is applied to O(n) columns. Solving the triangular equa-
tion system takes O

(
k2

)
time. Since k ≤ min{m, n}, the time complexity of Al-

gorithm 1. is thus O (mn). Some computations may be made faster than shown
in Algorithm 1., but as long as the running time remains quadratic, we have
chosen not to present details on this.

3.2 Reducing the Solution

Note that the entering j+ is found without explicitly computing the new QR-
decomposition. Due to Reeves [11], this is also the case when the best reduction
of S is to be found.

Proposition 2. If k < m, then j− ∈ N \S is an optimal solution to [SSP−(S)]
if and only if

j− ∈ arg min
j�∈S

x2
�

‖y�‖2 . (5)

Proof. See [11]. �

Actually, the expression to be minimized in (5) corresponds to the increase in
the objective function value implied by the elimination of j�.

The matrix
(
rj1 , . . . , rj�−1 , rj�+1 , . . . , rjk

)
is upper Hessenberg with non-zero

subdiagonal elements in columns � + 1, . . . , k. By applications of k − � Givens

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Bidirectional Greedy Heuristic for the Subspace Selection Problem 169

Algorithm 2. backward(δ̄, S, z)
k ← |S|

find �− ∈ arg min�∈{1,...,k}

�
x2

�

‖y�‖

	

if x2
�− ≥ δ̄

y�−

2

then
return false

k ← k − 1, S ← S \ {j�−}
for � ← �−, �− + 1, . . . , k do

j� ← j�+1, y� ← y�+1

Y ←
�
y1, . . . , yk

�
for � ← �−, �− + 1, . . . , k do

G ← the Givens rotation G�,�+1
�
rj�
�

R ← GR, α ← Gα, Y ← GY
x ← Y T α
z ←

�m
�=k+1 α2

�

return true

rotations, the first of which is G�,�+1
(
rj�+1

)
, a partial QR-decomposition of AΠ ′,

where Π ′ is a permutation matrix putting aj1 , . . . , aj�−1 , aj�+1 , . . . , ajk in the first
k − 1 positions, is established. We also apply the rotations to the columns of Y ,
which ensures that the upper left (k − 1) × (k − 1) submatrix of Y remains an
inverse of R̃T . Hence the backward greedy move is as given in Algorithm 2. If
the increase in the objective function value is as large as the input argument δ̄,
we reject the move.

In the worst case, the atom to leave S is j1, and we have to apply k − 1
rotations. Since the construction and the application of a Givens rotation matrix
takes constant time, it follows from k ≤ min{m, n} that the running time of
Algorithm 2. is O(mn).

4 Bidirectional Greedy Search

All forward and backward greedy heuristics suffer from lack of ability to back
up if unfortunate moves are made early in the process. Bad effects of the greedy
methods could be reduced by combining them with search in other neighbor-
hoods than N+(S) and N−(S). For instance, if a local optimal solution with
respect to the exchange by one neighborhood is computed immediately after the
addition/elimination of an atom, it is likely that significantly better solutions
could be located.

In the case of [SSP], the size of the exchange by one neighborhood is |S|(n −
|S|), and we are aware of no method for evaluating a single neighbor without
virtually performing both of Algorithms 1. and 2.. Since a neighborhood evalua-
tion procedure with time complexity of the fourth order is undesirable, we rather
suggest a search that entirely is based on N+(S) and N−(S). This results in a
bidirectional greedy heuristic of which we study two versions.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

170 D. Haugland

The first version can be seen as a modification of the forward greedy heuristic
in that it starts with S = ∅, and has forward moves as its primary operation.
Throughout the search, it keeps track of S1, . . . , St, where Sk is the best known
solution with cardinality k. When |S| = k, and a backward greedy move can
result in a solution better than Sk−1, this move is preferred. Otherwise, a forward
move is tried unless |S| = t, in which case the algorithm stops. Also the forward
move is rejected if there is no solution in N+(S) better than Sk+1. In that case,
a deterministic move, referred to as a jump, to the solution Sk+1 is made. Thus
finite convergence, to a possibly suboptimal solution, is ensured. The heuristic
is given in Algorithm 3.

A backward version of this heuristic is valid in the case n ≤ m. Then we start
with S = N , and in each iteration we move to the best solution in N+(S) if
it is better than Sk+1. Otherwise we move to the best of the best solution in
N−(S) and Sk−1, unless the stopping criterion |S| = t is satisfied. Hence, with
only minor changes, the algorithmic steps are the same as those of Algorithm 3.

For both heuristics, the jumps are accomplished by a sequence of moves in
the two neighborhoods. Each jump implies |Sk±1 \ S| and |S \ Sk±1| forward and
backward moves, respectively.

The bidirectional greedy algorithm resembles Variable Neighborhood Search
(VNS) introduced by Mladenović and Hansen [12] in the sense that more than
one neighborhood is considered. Another point of resemblance is that if the
search in one neighborhood is unsuccessful, search is directed to the next. How-
ever, our approach is distinguished from VNS in that the solution found in
N+(S) or N−(S) may be accepted even if it is no better than the currently
best. In fact, there is no solution in N−(S) with smaller objective function value
than S, and consequently the definition of success of the search in this neigh-
borhood must be more liberal.

4.1 Randomized Search

Both versions of the bidirectional greedy algorithm can be modified in order to
limit the number of moves opposite to the primary search direction. This will lead
to faster convergence, but at the expected expense of weaker solution quality.
One way of controlling the extent of reverse moves, is to draw randomly if a
beneficial secondary move should be approved. By introducing a fixed approval
probability, p, we have the deterministic variants of the bidirectional greedy
methods if p = 1, and the standard one-directional greedy methods if p = 0.
Any value in the range (0, 1) reflects the trade-off between computational speed
(small p) and solution quality (large p).

5 Numerical Experiments

We have implemented both versions of our bidirectional greedy heuristic, with
both deterministic and randomized search. All code is written in C++ and com-
piled by the GCC 4.1.1 compiler, and all experiments reported are carried out
on a Pentium M 1.73 GHz computer with a Fedora Linux operating system.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Bidirectional Greedy Heuristic for the Subspace Selection Problem 171

Algorithm 3. bigreedyforward(S, z∗)
S ← ∅, z∗ ← ∞
z1 ← z2 ← · · · ← zt ← ∞
repeat

k ← |S|
move ← false
if k > 2 then
move ← backward(zk−1 − z∗, S, z∗)

if move then
Sk−1 ← S, zk−1 ← z∗

else if k < t then
move ← forward(z∗ − zk+1, S, z∗)
if move then

Sk+1 ← S, zk+1 ← z∗

else
S ← Sk+1, z∗ ← zk+1

else
done ← true

until done

5.1 Forward Search

In order to study the performance of our methods, we first apply them to a set of
randomly generated instances of size m = 20, n = 100, and where the subspace
dimension is set to t = 2, 4, . . . , 10. For each such triple (m, n, t) we generate
100 instances by first drawing all dictionary and target elements from a uniform
distribution on [−1, 1], and then normalize such that ‖b‖ = 1 and

∥∥aj
∥∥ = 1 for

all j ∈ N . Each instance is solved by the forward version of the bidirectional
greedy algorithm, for each of the approval probabilities 0.00, 0.25, 0.50, 0.75 and
1.00.

In Table 1, we give the objective function values [solution], that is the
squared residual norm, averaged over all 100 instances within a set. A column in
the table corresponds to an approval probability. In the same table, we also give
the number of secondary (backward) moves performed [moves]. This includes
the |S \ Sk+1| backward moves required when a jump is made. Note that for the
forward version of our algorithm, the total number of moves is given by t plus
twice the number of reverse moves.

Table 1 shows as expected that the bidirectional approach gives better results
than the pure forward greedy method. The largest improvement is for the largest
value of t, in which case the reduction in objective function value is 19%. This
comes at the computational price of 11.82 moves in average, 0.91 of which are
backward, or an increase of 18.2% from the 10 forward moves of the pure greedy
method. For smaller values of t, the effect is smaller. Throughout we see that
putting the approval probabilities between 0 and 1 for most instance sets gives
results between those obtained for the extreme values of this parameter. The

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

172 D. Haugland

Table 1. Average results for 100 instances where m = 20 and n = 100

p = 0.00 p = 0.25 p = 0.50 p = 0.75 p = 1.00
t solution solution moves solution moves solution moves solution moves
2 0.43905 0.43905 0.00 0.43905 0.00 0.43905 0.00 0.43905 0.00
4 0.19534 0.19315 0.07 0.19388 0.04 0.19282 0.11 0.19275 0.12
6 0.08194 0.08102 0.06 0.07916 0.21 0.07911 0.24 0.07862 0.32
8 0.02975 0.02809 0.19 0.02793 0.31 0.02723 0.49 0.02643 0.63

10 0.00854 0.00753 0.36 0.00756 0.46 0.00722 0.82 0.00692 0.91

solution quality tends to improve with increasing value of p, but for p = 0.5,
there are two exceptions to this rule (t = 4 and t = 10).

A similar experiment where m = 100 and n = 1000 is reported in Table 2.
Here we let t grow beyond m/2, although this is not likely to be the case for the
application described in the introduction. For other applications [1], we may how-
ever have t ≥ m/2. We observe the same effects, but when t is sufficiently large,
any value of p seems to give a subspace where the target can be approximated
with very small error. The best relative improvement over the one-directional
greedy method is obtained for t = 50 (28% reduction, 63% more moves).

Table 2. Average results for 100 instances where m = 100 and n = 1000

p = 0.00 p = 0.25 p = 0.50 p = 0.75 p = 1.00
t solution solution moves solution moves solution moves solution moves

10 0.34120 0.33892 0.36 0.33748 0.63 0.33459 1.21 0.33396 1.69
20 0.11353 0.10988 1.49 0.10743 2.99 0.10625 4.33 0.10460 5.57
30 0.03249 0.03037 2.75 0.02901 5.00 0.02811 7.25 0.02759 9.62
40 0.00752 0.00661 3.34 0.00621 7.23 0.00594 10.31 0.00587 13.10
50 0.00123 0.00098 4.29 0.00094 8.27 0.00091 11.73 0.00088 15.82
60 0.00011 0.00010 4.70 0.00009 10.18 0.00008 13.63 0.00008 17.73

5.2 Comparing Forward and Backward Search

In order to compare the forward bidirectional greedy approach with the backward
version, we also study two instance sets where m = n. As above, we let m attain
the values 20 and 100, and we let t vary from 4 to 16 and from 10 to 90,
respectively. For p ∈ {0.00, 0.25, 0.50, 0.75, 1.00}, we apply both bidirectional
heuristics to 100 instances in each of the two sets. Results are given in Tables
3-4.

Comparing the one-directional methods first, we see that the forward version
gives better results for values of t as large as 12 and 80 in the two instance sets. It
is not surprising that the competitiveness of backward greedy grows with subset
size, but it is noteworthy that the forward version gives superior results even for
t > m/2. This observation is also made for the bidirectional heuristic, although
putting p = 1 helps the backward version to get closer to the forward one (for

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Bidirectional Greedy Heuristic for the Subspace Selection Problem 173

Table 3. Average results for 100 instances where m = n = 20

p = 0.00 p = 0.25 p = 0.50 p = 0.75 p = 1.00
t solution solution moves solution moves solution moves solution moves

primary direction forward
4 0.45215 0.44862 0.10 0.44857 0.15 0.44700 0.22 0.44597 0.25
8 0.24565 0.23658 0.51 0.22823 1.22 0.22595 1.46 0.22447 1.48

12 0.12903 0.12136 1.09 0.11213 2.53 0.10715 3.62 0.10498 4.10
16 0.05980 0.05475 1.99 0.05023 4.42 0.04725 6.82 0.04404 8.19

primary direction backward
4 0.55158 0.49251 2.16 0.46355 5.64 0.46577 8.18 0.45447 10.15
8 0.30559 0.28097 1.45 0.25125 3.20 0.24270 5.17 0.23056 6.58

12 0.14160 0.13291 0.64 0.12541 1.24 0.12202 1.86 0.11303 2.52
16 0.04046 0.03911 0.09 0.03684 0.24 0.03360 0.46 0.03356 0.55

Table 4. Average results for 100 instances where m = n = 100

p = 0.00 p = 0.25 p = 0.50 p = 0.75 p = 1.00
t solution solution moves solution moves solution moves solution moves

primary direction forward
10 0.59259 0.59026 0.71 0.58905 1.17 0.58837 1.68 0.58754 2.02
20 0.40824 0.40054 2.22 0.39886 4.53 0.39436 8.23 0.39285 10.11
30 0.29254 0.27973 4.86 0.27337 10.74 0.26988 18.06 0.27003 23.05
40 0.21154 0.19714 7.61 0.18889 17.88 0.18514 30.39 0.18314 39.86
50 0.15202 0.13553 11.53 0.12896 27.53 0.12408 45.82 0.12305 62.52
60 0.10830 0.09361 15.19 0.08223 37.41 0.07959 67.51 0.07805 90.85
70 0.07346 0.06072 19.35 0.05179 48.87 0.04759 90.76 0.04532 125.63
80 0.04581 0.03573 24.96 0.02833 62.70 0.02590 114.81 0.02473 162.05
90 0.02300 0.01712 28.49 0.01242 83.87 0.01101 154.18 0.00977 214.27

primary direction backward
10 0.67832 0.60670 25.54 0.59562 69.35 0.59290 160.61 0.59119 231.54
20 0.52567 0.42805 23.84 0.40912 66.07 0.39911 140.76 0.39863 210.57
30 0.41227 0.30971 20.17 0.28667 57.61 0.27784 130.56 0.27605 182.22
40 0.32013 0.23273 16.74 0.20066 48.65 0.19396 105.47 0.18852 149.91
50 0.23876 0.16640 13.49 0.14455 37.16 0.13405 79.14 0.13014 112.86
60 0.16654 0.12318 8.86 0.09887 27.99 0.09207 51.30 0.08708 78.19
70 0.10153 0.07433 5.99 0.06209 17.56 0.05639 31.36 0.05412 42.78
80 0.04899 0.04092 2.90 0.03491 7.23 0.02972 14.98 0.02629 20.91
90 0.01289 0.01193 0.76 0.01088 1.80 0.01026 2.74 0.00903 3.99

t = 12 and t = 80, the relative superiority of the forward version is reduced from
8.9% to 7.1% and from 6.5% to 5.9%, respectively).

Comparing the work load of the two versions of bidirectional search with
p = 1, we see that for t = 12 in the first instance set the forward version requires
20.20 moves in average, whereas the backward version takes 20 forward moves
for initiating S to N (compute the QR-factorization of A), and then in average
10.52 backward and 2.52 forward moves. Hence the better results obtained by
the forward version come at no higher computational cost. In the second instance

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

174 D. Haugland

Table 5. Average performance for 100 instances where m = n = 100

p = 0.00 p = 0.25 p = 0.50 p = 0.75 p = 1.00
t tmoves cpu tmoves cpu tmoves cpu tmoves cpu tmoves cpu

primary direction forward
10 10.00 0.00 11.42 0.00 12.34 0.00 13.36 0.00 14.04 0.00
20 20.00 0.01 24.44 0.01 29.06 0.01 36.46 0.01 40.22 0.02
30 30.00 0.01 39.72 0.01 51.48 0.02 66.12 0.03 76.10 0.04
40 40.00 0.01 55.22 0.03 75.76 0.05 100.78 0.08 119.72 0.11
50 50.00 0.01 73.06 0.05 105.06 0.10 141.64 0.18 175.04 0.26
60 60.00 0.02 90.38 0.08 134.82 0.19 195.02 0.37 241.70 0.56
70 70.00 0.02 108.70 0.12 167.74 0.34 251.52 0.69 321.26 1.11
80 80.00 0.02 129.92 0.20 205.40 0.58 309.62 1.23 404.10 1.97
90 90.00 0.03 146.98 0.29 257.74 1.00 398.36 2.23 518.54 3.63

primary direction backward
10 190.00 0.83 241.08 1.00 328.70 1.33 511.22 2.04 653.08 2.59
20 180.00 0.82 227.68 1.01 312.14 1.33 461.52 1.99 601.14 2.55
30 170.00 0.81 210.34 1.00 285.22 1.32 431.12 2.00 534.44 2.49
40 160.00 0.79 193.48 0.97 257.30 1.29 370.94 1.90 459.82 2.36
50 150.00 0.76 176.98 0.92 224.32 1.20 308.28 1.72 375.72 2.13
60 140.00 0.70 157.72 0.82 195.98 1.09 242.60 1.44 296.38 1.82
70 130.00 0.60 141.98 0.71 165.12 0.90 192.72 1.14 215.56 1.35
80 120.00 0.47 125.80 0.53 134.46 0.62 149.96 0.77 161.82 0.90
90 110.00 0.28 111.52 0.30 113.60 0.33 115.48 0.35 117.98 0.38

set, this is no longer true, as the average number of moves for t = 80 are 404.10
and 161.82, respectively. Only for t ≤ 60 is the number of moves smaller in the
forward version.

To compare the work load further, we have also given the running time in
CPU seconds [cpu] for the last instance set in Table 5. In comparison, we give
the total number of moves [tmoves], including moves in both the primary and
secondary direction. Hence the move counts reported in Table 5 equal twice
those of Table 4, plus t when the primary direction is forward, and plus 2n − t
otherwise.

When the primary direction is forward (backward), we see, by reading Table 5
vertically, that the running time increases slightly faster than the number of
moves with increasing (decreasing) t. A similar observation is made when reading
horizontally, i.e. when t is constant and p increases. The running times confirm
that the forward version is the more efficient for t ≤ 60. When the number of
moves are approximately equal, e.g. when t = 70 and p = 0.50, the forward
version is faster. This is explained by the fact that in all but the first t moves
of the backward version, we have k > t in Algorithms 1.-2., whereas k ≤ t in all
moves of the forward version. In both algorithms, a triangular system of k linear
equations is solved, requiring O

(
k2

)
time.

Finally, we note that the backward version has the best worst-case running
time for m = n = 100. The instances in its hardest subset (t = 10, p = 1.00)
could be solved in averagely 2.59 seconds, whereas the forward version needed
3.63 seconds in average for its hardest instances (t = 90, p = 1.00).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Bidirectional Greedy Heuristic for the Subspace Selection Problem 175

6 Conclusion

We have studied the problem of finding the best subspace of low dimension for
projecting a given target vector. The selection criterion is that the projection, in
a least squares sense, is to be as close as possible to the target. A set of possible
basis vectors for the subspace are given, and the problem is to choose a given
number of these.

We demonstrate that the moves in the forward and greedy heuristics of this
NP-hard problem can be carried out in quadratic time. Conversely, the exchange
by one move seems to require two orders of magnitude more computations. Moti-
vated by these observations, we suggest a generalized greedy approach where the
search alternates between forward and backward greedy moves (extensions and
reductions by one). This results in a bidirectional greedy algorithm with either a
forward or a backward primary direction. The algorithm prefers a move opposite
to its primary direction whenever this produces a solution better than the best
known solution of the resulting cardinality. We have also given a randomized
extension of the heuristic.

Computational tests show that the suggested bidirectional greedy methods are
superior to their one-directional counterparts. Furthermore, the forward version
seems to give the best results unless the subspace dimension is significantly
higher than half the dimension of the target.

The validity of the approach taken in this work is not restricted to the partic-
ular problem under study. An interesting topic for future research is to identify
other combinatorial optimization problems where this approach can give signif-
icant improvements over greedy search in one direction.

References

1. Miller, A.J.: Subset Selection in Regression, 2nd edn. Chapman and Hall, London,
U.K (2002)

2. Couvreur, C., Bresler, Y.: On the optimality of the backward greedy algorithm
for the subset selection problem. SIAM Journal on Matrix Analysis and Applica-
tions 21, 797–808 (2000)

3. Mallat, S., Zhang, Z.: Matching Pursuit in a Time-frequency Dictionary. IEEE
Transactions on Signal Processing 41, 3397–3415 (1993)

4. Pati, Y.C., Rezaiifar, R., Krishnaprasad, P.S.: Orthogonal Matching Pursuit: Re-
cursive function approximation with applications to wavelet decomposition. In:
Proc. 27th Annu Asilomar Conf. Signals, Systems and Computers, Pacific Grove,
CA, pp. 40–44 (1993)

5. Gharavi-Alkhansari, M., Huang, T.S.: A Fast Orthogonal Matching Pursuit Algo-
rithm. In: Proc. ICASSP ’98, Seattle, Washington, USA, pp. 1389–1392 (1998)

6. Natarajan, B.K: Sparse approximate solutions to linear systems. SIAM J Com-
put. 24, 227–234 (1995)

7. Haugland, D., Storøy, S.: Local search methods for �1-minimization in frame based
signal compression. Optimization and Engineering 7, 81–96 (2006)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. W.H. Freeman, New York (1979)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

176 D. Haugland

9. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by Basis Pursuit.
SIAM Journal on Scientific Computing 20, 33–61 (1998)

10. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins Univ.
Press, Baltimore, MD (1996)

11. Reeves, S.J.: An Efficient Implementation of the Backward Greedy Algorithm for
Sparse Signal Reconstruction. IEEE Signal Processing Letters 6, 266–268 (1999)

12. Mladenović, N., Hansen, P.: Variable Neighborhood Search. Computers and Oper-
ations Research 24, 1097–1100 (1997)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

EasySyn++: A Tool for Automatic Synthesis of
Stochastic Local Search Algorithms

Luca Di Gaspero and Andrea Schaerf

DIEGM, University of Udine, Udine, Italy
{l.digaspero,schaerf}@uniud.it

Abstract. We present a software tool, called EasySyn++, for the au-
tomatic synthesis of the source code for a set of stochastic local search
(SLS) algorithms. EasySyn++ uses C++ as object language and relies
on EasyLocal++, a C++ framework for the development of SLS al-
gorithms. EasySyn++ is particularly suitable for the frequent case of
having many neighborhood relations that are potentially useful.

1 Introduction

In this work we present a software tool, called EasySyn++, for the automatic
synthesis of the source code for a set of local search algorithms. The synthesized
algorithms range from basic local search methods, like hill climbing, simulated
annealing, and tabu search, to complex strategies, such as variable neighborhood
search and iterated local search.

The tool is implemented in PHP and it uses C++ as object language. Easy-

Syn++ relies on the C++ local search framework, EasyLocal++ [1,2], which
has recently been entirely redesigned, and on EasyAnalyzer [3] for the exper-
imental analysis of SLS algorithms.

EasySyn++ input is an XML description of the basic building blocks of
local search, namely the search space, the neighborhood relation(s), and the
cost function components (hard and soft) for the specific problem. Its output is
a set of C++ classes that have to be completed with some problem-specific code
developed by the user, and have to be compiled against the problem-independent
abstract classes of EasyLocal++.

EasySyn++ is particularly useful for the frequent case of many neighborhood
relations (see, e.g., [4]). For these cases, EasySyn++ manages automatically
the composition of basic neighborhoods defining more complex ones. As a conse-
quence, the set of possible combinations of algorithms is relatively large, and the
human coding of the whole set of potential algorithms would be time consuming
and prone to errors and inconsistencies.

Needless to say, EasySyn++ cannot replace the human experience in design-
ing the full-fledged algorithm with all its peculiarities. Nevertheless, we believe
that this tool can help in a preliminary exploratory phase in which many alter-
natives are evaluated before focusing on the most promising ones. Thus, Easy-

Local++, EasyAnalyzer, and EasySyn++ allow the user to obtain with

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2007, LNCS 4638, pp. 177–181, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

178 L. Di Gaspero and A. Schaerf

Fig. 1. The architecture of EasySyn++

limited manual programming a first picture of the behavior of local search for
his/her problem, although at the cost of a lot of computational power. However,
being CPU time much cheaper than programmer’s time, we believe that the use
of such a tool could help in engineering local search algorithms.

The main difference with respect to other tools, such as for example Comet
[5] and its predecessors, is that in those software environments the program
corresponding to the specified algorithm is assembled internally by the system
and therefore its execution is performed “behind the scenes”. Conversely, Easy-

Syn++ is completely glass-box (or white-box), and the exact C++ statements
are “before user’s eyes”, and can be modified and adapted at user’s preferences.

2 EasySyn++ Architecture

The architecture of EasySyn++ is shown in Figure 1. The input is a XML
description file (which refers to a DTD file for its validation) that is parsed by
the core module, which calls the modules responsible for generating the code.

The description file specifies the local search structure and the set of runners,
kickers and solvers that we want to synthesize. An example description file for the
N-Queens problem is given in Listing 1.1. The <data> element specify the names

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

EasySyn++: A Tool for Automatic Synthesis 179

of the classes and their role. In this case, for example, there is just one state
representation (<state> element) and two neighborhoods (<move> elements).

The <helpers> element specifies the helpers, giving the data types they
manage and the optional class names. Class names not supplied are gener-
ated by appending the standard name to the problem prefix (for example,
NQ StateManager).

The <kickers> and <runners> elements specify to which neighborhoods these
components have to be applied. If more than one neighborhood is specified, Easy-

Syn++ generates all possible ones that can be obtained using the union operator.
In this context, the tag <use-all-neighborhoods/> declares that EasySyn++

has to synthesize one runner (or kicker) for each possible union neighborhood. For
example, EasySyn++ generates three different HillClimbing runners: one for
each move type and one for their union.

The number of generated runners is exponential in the number of neighbor-
hoods: the size of the powerset minus one (the empty set). Therefore, when the
number of neighborhoods is large, the use of <use-all-neighborhoods/> must
be limited, and instead only subsets of the neighborhoods should be used.

Listing 1.1. The XML description file

<?xml version="1.0" standalone="no"?><!DOCTYPE problem SYSTEM "easysyn.dtd">
<problem name="nQueens" prefix="NQ">
<data dir="data/">
<input classname="BoardSize" />
<output classname="ChessBoard" />
<state classname="QueensArray" />
<move classname="Exchange" />
<move classname="Swap" />

</data>
<helpers dir="helpers/">
<state-manager state="QueensArray"/>
<cost-component classname="Diagonal"/>
<cost-component classname="Row"/>
<neighborhood-explorer move="Exchange"/>
<neighborhood-explorer move="Swap" classname="SwapExplorer"/>
<output-manager output="ChessBoard"/>
<prohibition-manager move="Exchange"/>
<prohibition-manager move="Swap"/>

</helpers>
<kickers>
<kicker id="sk"> <use-neighborhood ref="Swap"/> </kicker>
<kicker id="ak"> <use-all-neighborhoods/> </kicker>

</kickers>
<runners>
<runner type="HillClimbing" id="hc"> <use-all-neighborhoods/> </runner>
<runner type="TabuSearch" id="ts"> <use-neighborhood ref="Exchange"/> </runner>

</runners>
<solvers>
<solver type="IteratedLocalSearch"> <use-runner ref="ts"/> <use-kicker ref="ak" type="

random"/> </solver>
<solver type="TokenRing" max_length="3"> <use-all-runners/> </solver>
<solver type="VariableNeighborhoodDescent"> <use-kicker ref="sk" type="best"/> </solver>

</solvers>
</problem>

Each module of EasySyn++ is responsible for a type of class to generate.
The modules are briefly described in the following.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

180 L. Di Gaspero and A. Schaerf

Data and helper synthesizer. This module creates the skeleton for Data and
Helper classes. The actual code describing the attributes of states and moves
of the application, together with the cost functions and the neighborhood
exploration strategy, must be provided by the user.

Kickers Synthesizer. Kickers are synthesized almost completely. The human
intervention regards only the notion of synergy. For each ordered pair of
neighborhoods, EasySyn++ defines a method of the kicker that takes a
move of each one, and returns a boolean value. The body of the method
must be supplied by the user by specifying the conditions on the values of
the attributes of the moves to be synergic.

Runners Synthesizer. Runners are synthesized completely. This module has
only the task to create the runner objects with the correct template instan-
tiations and the links to the type-compatible helpers.

Solvers Synthesizer. Solvers also are synthesized completely. This module
only creates the solver objects with the template instantiations and the
links to runners and kickers. For each concrete solver there is a value of
a command-line argument to invoke it. Therefore, all the necessary links
with the runners are inserted one by one in a code branch guarded by the
given value for such a command-line argument.

Compilation tools. This module does not generate C++ code but sets up a
basic configure script and a set of Makefiles for building the system. The
target compilation environment is the GNU Autotools suite, which comprises
Autoconf, Automake and Libtool. This environment can be considered as the
de-facto standard for portably building and installing applications across
many systems (including various UNIX/Linux distributions, Mac OS X and
Cygwin on Windows).

The result of the synthesis is a set of C++ source files and the portable com-
pilation environment so that the generated code can be immediately compiled
just out-of-the-box. Yet, the methods that must be supplied by the user are
implemented as a single throw statement that raises a run-time exception when
executed. This way the programmer is prompted to take care of the actual im-
plementation of those methods, whereas if we had left the methods empty the
programmer could forget to implement some method thus giving raise to errors
whose effects could be unpredictable.

As shown in Figure 1, EasySyn++ provides also the abstract EasyLo-

cal++ classes for multimodal runners and kickers based on neighborhood com-
positions, such as unions and sequences, as defined in [4]. These components are
automatically synthesized for an arbitrary number k of neighborhoods, without
the need to define new helper classes and to write any code.

EasySyn++ provides also kickers for an arbitrary composition of neighbor-
hoods (multimodal kickers). They provide methods for performing both random
and best sequences of moves from the composite neighborhood.

In order to generate the best moves (restricted or general) the kicker uses a
backtracking algorithm that backtracks as soon as two consecutive moves are
not feasible.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

EasySyn++: A Tool for Automatic Synthesis 181

3 Discussion and Conclusions

First, although important parts of the code must be provided by the user, the
advantages of using EasySyn++ are significant. Indeed, instead of writing the
code from scratch, the user has only to insert specific fragments in the right
places (indicated by a throw statement), without having to worry about object
communication and high level control structures.

As a matter of fact, the programming effort needed to come up with a family
of 16 solvers for the N-Queens problem requires only 168 user-supplied lines of
code. The overall application is composed also of 750 synthesized lines of code,
and 6,898 coming from EasyLocal++ (including the multimodal runners and
kickers). Even though the number of lines is clearly a very rough measure of
the human effort, this is very limited and EasySyn++ can be considered as a
software environment for the fast prototyping of SLS algorithms.

Another advantage of EasySyn++ is that it makes an intensive and prin-
cipled reuse of the code. For example, the exploration and the evaluation of
the union of two or more neighborhoods is performed relying completely on the
helpers of the underlying basic neighborhoods, without the need of any addi-
tional code. This design allows the user to avoid duplications that would make
the maintenance of the code very problematic.

Needless to say, there are also some limits in using EasySyn++ and Easy-

Local++. Their architecture prescribes a precise structure for the design of a
local search algorithm: the entities of the problem are factorized in groups of re-
lated classes in the framework and the user is forced to use them in a controlled
way. If, on the one hand, this helps in term of conceptual clarity and it is one of
the main sources of software reuse, on the other hand, since the control logic is
completely defined at the framework level, this feature poses some restrictions
in the design of ad hoc SLS algorithms that need to be tightly tailored to some
specific feature of the problem at hand.

References

1. Di Gaspero, L., Schaerf, A.: EasyLocal++: An object-oriented framework for flexible
design of local search algorithms. Software—Practice and Experience 33(8), 733–765
(2003)

2. Di Gaspero, L., Schaerf, A.: Writing local search algorithms using EasyLocal++.
In: Voß, S., Woodruff, D.L. (eds.) Optimization Software Class Libraries. OR/CS
series, pp. 155–176. Kluwer Academic Publishers, Boston (2002)

3. Di Gaspero, L., Roli, A., Schaerf, A.: EasyAnalyzer: an object-oriented framework
for the experimental analysis of stochastic local search algorithms. In: Stützle, T.,
Birattari, M., Hoos, H. (eds.) Engineering Stochastic Local Search Algorithms (SLS-
2007). LNCS, vol. 4638, pp. 76–90. Springer, Heidelberg (2007)

4. Di Gaspero, L., Schaerf, A.: Neighborhood portfolio approach for local search applied
to timetabling problems. Journal of Mathematical Modeling and Algorithms 5(1),
65–89 (2006)

5. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press, Cam-
bridge (MA), USA (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Human-Guided Enhancement of
a Stochastic Local Search:

Visualization and Adjustment of 3D Pheromone

Jaya Sreevalsan-Nair1, Meike Verhoeven1, David L. Woodruff1,
Ingrid Hotz2, and Bernd Hamann1

1 University of California, Davis, CA, USA
2 Konrad-Zuse-Zentrum für Informationstechnik, Berlin, Germany

{mverhoev,jnair,dlwoodruff,bhamann}@ucdavis.edu, hotz@zib.de

1 Introduction

In this paper, we describe user interaction with an optimization algorithm via
a sophisticated visualization interface that we created for this purpose. Our
primary interest is the tool itself. We demonstrate that a user wielding this
tool can find ways to improve the performance of an ant colony optimization
(ACO) algorithm as applied to a problem of finding 3D paths in the presence
of impediments [14]. One part of a solution method can be to find a path on
a grid. Of course, there are near linear time algorithms for the shortest path
that have been applied to problems that are quite large. However, for a grid in
three dimensions with arcs on the axes and diagonals, the problems can become
extremely large as resolution is increased and heuristics thus make sense (see,
e.g., [6] for state-of-the art algorithms where pre-processing is possible). Ant
colony optimization (see, e.g., [4,5]) is ideally suited to such a problem.

The visualization literature covers many related aspects. For example, analy-
sis of search algorithm results can be effectively done using visualization [7].
Monitoring an algorithm using visualization gives the user all levels of infor-
mation [3]. Visualization plays a major role in steering computations as can be
seen in numerous cases. A few instances are: visualization for interactive visual
computing of programs [1], visualization in adaptive grid methods for debug-
ging as well as analyzing computational algorithms [9]. Computational steering,
which is the terminology for use of visualization to monitor simulations or iter-
ations and using the feedback for improving computational results, has been a
powerful research tool and a taxonomy of existing systems can be found in [11].
Mitsubishi research labs has conducted extensive research concerning what they
call “human guided search” (see, e.g., [8,10]). They developed visualization tools
for optimization problems such as scheduling, routing, and layout. One of their
ideas is that computer algorithms can locate local minima given a starting point,
but users can suggest good starting points. Our approach here continues this re-
search line, but we provide tools for interacting directly with the operation of
the ant system by allowing the user to lay down pheromone.

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2007, LNCS 4638, pp. 182–186, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Human-Guided Enhancement of a Stochastic Local Search 183

2 Problem Formulation and Solution Method

We create a finite set of points G ⊂ A, then a path is defined by the variables pij ,
where pij is one if the arc from i to j is in used by the path and zero otherwise.
The problem on a grid G is called (G) and is written as a shortest path problem
between points a and b in G:

min
p

∑

i∈G

∑

j∈G

[
Dijpij

(
1 +

∑

s∈S
csβ(s, i, j)

)]
(G)

subject to:
∑

i∈G
Iaipai = 1;

∑

i∈G
Iibpib = 1

∑

i∈G
Iikpik −

∑

j∈G
Ikjpkj = 0, k ∈ G\{a, b}

where the elements of the incidence matrix, Iij , have the value one if i and j are
neighbors and zero otherwise. The elements of the distance matrix, Dij give the
distances between neighboring points i and j. The penalty for travel through
impediment s in the set of spheres S is given by cs. The data β(s, i, j) gives the
portion of the line segment between i and j that is in the range of impediment s
(for large instances, this is computed only as needed). We use a rectangular grid
with resolution k, with arcs on the coordinate axes as well as all of the diagonals.

In ant colony optimization, each ant decides independently which node to go
to based on the pheromone trail τij and a heuristic value ηij for grid points i and
j. We set our heuristic value so that it considers both path length and number
of arcs:

ηij =

{
((

√
3

k−1 + |i − b| − |j − b|) · γ + 1
Dij(1+

�
s∈S csβ(s,i,j)) · (1 − γ), if Iij = 1

0, otherwise

where γ is a parameter on which aspect to emphasize more. The first term com-
putes the difference in distance from j and i to the end point, b. The maximum
length of an arc is added to ensure that this term is always positive. The second
term gives the cost for this arc.

The ant t located in the node i selects the arc to node j according to the
probability

(τij(t))α(ηij)β

∑
n∈N (τin(t))α(ηin)β

, ∀j ∈ N

where the parameters α and β determine the relative influence of pheromone and
heuristic value. After each ant reaches the endpoint, pheromone is deposited:

Δij(t) =
{

Q/L(t) if (i, j) ∈ T (t)
0 otherwise

where Q is a constant and L(t) is the length of the path T (t) generated by ant
t. So the shorter a path is the more pheromone is laid on its arcs. The amount
of pheromone is updated according to the rule:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

184 J. Sreevalsan-Nair et al.

τij(t + 1) = ρτij(t) + Δτij(t)

where ρ (0 < ρ < 1) represents the persistence of the pheromone trail.
It is well known that some form of randomization is needed to improve the

exploration done by the ants (see, e.g., [13,2]). The scheme given by Nakamichi
and Arita [12] has been shown to be effective and it can be applied directly to
our algorithm. We introduce a random selection rate r to improve the diversity
of the paths by occasionally ignoring the heuristic selection function to select a
random neighbor.

An important feature of our algorithm is the insertion of the user into the
process, which is done by “correcting” an ant’s path. On arcs that are deemed
to be useful by the user extra pheromone is added. In order to do that in three
dimensions, a powerful visualization tool is needed.

3 Visualization and Path Edit Tool

The primary functions of our visualization tool are viewing the current data
and interactively manipulating the paths to help in faster convergence of our
iterative algorithm in a 3D environment. The data to be visualized consists of
paths, coordinates of the centers of spherical impediments, and their respective
radii. These spheres are clipped by a bounding box, which is our volume of
interest. Each sphere imposes a path-length penalty, which is indicated by the
opacity of the sphere. As we generate paths using the ACO algorithm, they are
plotted as thin solid tubes winding through the translucent spheres.

Each path is represented as a vector of points. An existing path can be modi-
fied by inserting a point, deleting a point, or overwriting a point. The tool facil-
itates various features to interactively modify the paths, and save these changes
to feed it back into the algorithm. Hence our tool includes an interface for mod-
ifying an existing point or adding a new point. This point modifying tool shows
the current coordinates of the point and allows the user to move along the three
orthogonal axes to place the point in a new position.

The color of the path is determined by the cumulative (penalized) distance at
each point on the path and is obtained by linearly interpolating a rainbow color
scheme between zero and the maximum penalized distance possible. This allows
us to have two different coloring possibilities- a global or a local coloring scheme
for each path. The global scheme makes use of the extremum of the paths, while
the local scheme uses only the corresponding penalty. (The penalties at the ends
of the path are the extrema, as we are considering cumulative, penalized distance
here.)

For ease of visualization, the tool also gives different options for viewing
the spheres: using the penalty-based opacity, using user-defined opacity or as
wireframe. It gives navigational control to the user to rotate and translate the
bounding box and its contents. Since this tool is used for research purpose, the in-
teraction with the ACO algorithm is via a very simple, file based interface: The
graphics tool can be viewed and tested by visiting http://graphics.idav.
ucdavis.edu/ jaya/InterdictionViz.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://graphics.idav.ucdavis.edu/~jaya/InterdictionViz
http://graphics.idav.ucdavis.edu/~jaya/InterdictionViz

Human-Guided Enhancement of a Stochastic Local Search 185

4 Experimental Results

We did some experiments with the limited goal of showing that we can use
the tool to find algorithmic improvements. Using the visualization tool, we are
able to find ways that could be used to refine the ACO. To show the im-
provement of path developed by ants when the user is in the loop we gen-
erated six different problem instances on a grid with resolution 50. These
instances can be solved exactly, but our goal is to use visualization as an en-
gineering tool. We found out that for these instances the ACO parameters
(α, β, γ, ρ, Q, r, δ) = (2, 3, 0.9, 0.99, 3, 0.03, 8) work well. Results are summarized
in Table 1. All but the first and last columns show the best solution found
after the given number of ants. The column labeled “1000with” shows the re-
sults if a hint is given after 500 ants. The first column gives the instance num-
ber and the last column gives the number of ants needed to find a solution
without a hint that is as good as the solution found with the hint. So the
user supplied adjustment is clearly quite valuable. This can be used to im-
prove algorithms used for problem instances that are too large to be solved
exactly.

Table 1. Results for the six instances

instance 500 1000with 1000 1500 2000 2500 ants until reached
1 2.880 2.180 2.546 2.283 2.224 2.170 2469
2 2.677 1.863 2.371 2.202 2.104 2.059 >500000
3 26.635 19.885 21.159 20.120 19.373 17.893 1643
4 8.544 5.935 7.514 7.113 6.908 6.854 11780
5 7.707 4.879 7.035 6.712 6.087 6.072 >500000
6 2.981 1.995 2.451 2.199 2.199 2.048 3545

5 Conclusions

We have described a powerful engineering tool for visualizing and interacting
with an ACO, which is challenging in a 3D environment. Ant systems are par-
ticularly well suited for visualization, but our main contribution has been to
demonstrate the use of a tool for interacting with the algorithm by allowing
the user to lay down pheromone and hence influence the future paths taken.
Computational experiments demonstrate the value of this approach to engi-
neering stochastic local search algorithms. The tool has been shown to result
in improved performance of the algorithm by allowing the user to take advan-
tage of their knowledge of the problem and convey that via the search control
parameters. Human aided optimization is a fairly young topic and seems to
offer substantial promise as part of efforts to engineer stochastic local search
algorithms.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

186 J. Sreevalsan-Nair et al.

References

1. Brunner, J.D., Jablonowski, D.J., Bliss, B., Haber, R.B.: Vase: the visualization
and application steering environment. In: Supercomputing ’93: Proceedings of the
1993 ACM/IEEE conference on Supercomputing, pp. 560–569. ACM Press, New
York (1993)

2. Bullnheimer, B., Hartl, R., Strauss, C.: A new rank based version of the ant system.
Central European Journal for Operations Research and Economics 7, 25–38 (1999)

3. Card, S.K., Mackinlay, J.D., Shneiderman, B. (eds.): Readings in information visu-
alization: using vision to think. Morgan Kaufmann Publishers Inc. San Francisco,
CA, USA (1999)

4. Dorigo, M., Gambardella, L.M.: Ant algorithms for discrete optimization. Artificial
Life 5, 137–172 (1999)

5. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics - Part
B 26, 1–13 (1997)

6. Goldberg, A.V., Kaplan, H., Werneck, R.: Reach for A*: Efficient point-to-point
shortest path algorithms, http://research.microsoft.com/research/pubs/
view.aspx?type=Technical%20Report&id=986

7. Hammond, S.P.: Putting the user in the loop: On-line user adaption of genetic
algorithms. In: Sarker, R., Reynolds, R., Abbass, H., Chen Tan, K., McKay, B.,
Essam, D., Gedeon, T. (eds.) Proceedings of the 2003 Congress on Evolutionary
Computation CEC2003, pp. 892–897. IEEE Press, Los Alamitos (2003)

8. Klau, G.W., Lesh, N.B., Marks, J.W., Mitzenmacher, M.: Human-guided tabu
search. In: National Conference on Artificial Intelligence (AAAI), pp. 41–47 (2002)

9. Kreylos, O., Tesdall, A.M., Hamann, B., Hunter, J.K., Joy, K.I.: Interactive vi-
sualization and steering of CFD simulations. In: VISSYM’02: Proceedings of the
Symposium on Data Visualisation 2002, Aire-la-Ville, Switzerland, pp. 25–34. Eu-
rographics Association (2002)

10. Lesh, N., Lopes, L.B., Marks, J., Mitzenmacher, M., Schafer, G.T.: Human-guided
search for jobshop scheduling. In: 3rd International NASA Workshop on Planning
and Scheduling for Space (October 2002)

11. Mulder, J.D., van Wijk, J.J., van Liere, R.: A survey of computational steering
environments. Future Gener. Comput. Syst. 15(1), 119–129 (1999)

12. Nakamichi, Y., Arita, T.: Diversity control in ant colony optimization. Artificial
Life and Robotics 7, 1614–7456 (2004)

13. Stützle, T., Hoos, H.: MAX − MIN ant system. Future Generations Computer
Systems Journal, 16 (2000)

14. Verhoeven, M., Woodruff, D.L.: Optimizing paths in the presence of spherical im-
pediments. Technical report, GSM, UC Davis, Davis CA 95616 (2007)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://research.microsoft.com/research/pubs/view.aspx?type=Technical%20Report&id=986
http://research.microsoft.com/research/pubs/view.aspx?type=Technical%20Report&id=986

Solving a Bi-objective Vehicle Routing Problem
by Pareto-Ant Colony Optimization

Joseph M. Pasia1, Karl F. Doerner2,3, Richard F. Hartl2, and Marc Reimann4

1 Department of Mathematics, University of the Philippines-Diliman,
Quezon City, Philippines

2 Department of Business Administration, University of Vienna, Vienna, Austria
3 Salzburg Research Forschungsgesellschaft, Salzburg, Austria

4 Institute for Operations Research, ETH Zurich, Zurich, Switzerland
jmpasia@up.edu.ph, {karl.doerner, richard.hartl}@univie.ac.at,

marc.reimann@ifor.math.ethz.ch

Abstract. In this paper we propose the application of Pareto ant colony
optimization (PACO) in solving a bi-objective capacitated vehicle rout-
ing problem with route balancing (CVRPRB). The objectives of the
problem are minimization of the tour length and balancing the routes.
We propose PACO as our response to the deficiency of the Pareto-based
local search (P-LS) approach, which we also developed to solve CVR-
PRB. The deficiency of P-LS is the lack of information flow among its
pools of solutions. PACO is a natural choice in addressing this deficiency
since PACO and P-LS are similar in structure. It resolves the absence of
information flow through its pheromone values. Several test instances are
used to demonstrate the contribution and importance of information flow
among the pools of solutions. Computational results show that PACO
improves P-LS in most instances with respect to different performance
metrics.

1 Introduction

The vehicle routing problem (VRP) [1] consists of finding the optimal route for
a fleet of vehicles, starting and ending at a single depot, that must serve a set
of n customer demands such that each customer is visited by only one vehicle
route. If each vehicle can only collect a maximum capacity of Q units of demand,
then the problem is known as capacitated VRP (CVRP).

Although exact approaches have been proposed to solve the VRP, the last 15
years witnessed increasing research effort on the development of metaheuristic
approaches since the VRP has been proven NP-hard [2]. Likewise, metaheuristics
have also been used to solve vehicle routing problems with k ≥ 2 objectives.

One example of a multiobjective VRP is the CVRP with route balancing
(CVRPRB), where the two objectives of the CVRPRB are (i) to minimize the
sum of the total distance travelled by each vehicle and (ii) to minimize the
difference between the longest and shortest vehicle tours. The CVRPRB was
tackled using population-based local search (P-LS) [3]. This algorithm repeatedly

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2007, LNCS 4638, pp. 187–191, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

188 J.M. Pasia et al.

generates a pool of good initial solutions by using a randomized savings algorithm
followed by local search.

In this paper, we propose a new approach in solving the CVRPRB by im-
provin P-LS. The decision to improve P-LS is based on our own observation
that, although it has been shown that this algorithm outperformed other state
of the art metaheuristics, it does not have any mechanism that allows the pools of
solutions to share information. Furthermore, there is also no sharing of informa-
tion among individuals or solutions of each pool. We believe that by addressing
these deficiencies, better results may be generated.

To allow cooperation among individuals and pools, we use Pareto Ant Colony
Optimization (PACO), which was first developed to solve a multiobjective port-
folio optimization problem [4]. This metaheuristic was an application of Ant
Colony Optimization (ACO) [5] to multiobjective problems.

In our proposed approach, the individuals of each pool share information via
the local pheromone update of PACO. This update allows the individuals to
explore the regions of the search space that are not yet visited by the previous
individuals. On the other hand, pools share information indirectly by the local
pheromone update and directly by the global pheromone update. The global
pheromone update allows the current pool to lead the next pool towards the
better region.

2 Pareto Ant Colony Optimization for CVRPRB

2.1 Initialization Phase of PACO

Just like P-LS, the starting solutions of PACO are initialized by a pool S of
identical solutions. These identical solutions assign each customer to a separate
tour. These solutions are then improved by combining customers i and j using
the pheromone information values τk

ij . It is worth mentioning that customers i
and j must belong to the candidate list created by the savings algorithm [6].
This strategy of creating the list was first introduced in [7].

It follows that given the set Ωγ of γ feasible combinations having the largest
savings, the combination (i, j) ∈ Ωγ is chosen with probability

(i, j) =

{
arg max(i,j)∈Ωγ

∑2
k=1 wk

i · τk
ij if q ≤ q0

(̂i, j) otherwise ,
(1)

where the random variable (̂i, j) has a probability distribution given by

Prij =

⎧
⎪⎨

⎪⎩

∑2
k=1 wk

i · τk
ij

∑
(u,l)∈Ωγ

(∑2
k=1 wk

u · τk
ul

) (i, j) ∈ Ωγ

0 otherwise.

(2)

After a solution has been improved, the 2-exchange operator is applied im-
mediately in order to avoid artificially balanced solutions [8].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Solving a Bi-objective Vehicle Routing Problem 189

Local pheromone update. After applying the 2-exchange operator, the indi-
vidual then updates the pheromone values using the equation τk

ij = (1 − ρ) ·
τk
ij + ρ · τmin ∀k, where (i, j) is an edge belonging to the individual, ρ is the

evaporation rate (with 0 ≤ ρ ≤ 1) and τmin is a small number that serves as the
minimum possible pheromone value. This update evaporates the pheromone val-
ues only along the edges visited by an individual in order to allow the succeeding
individuals to explore other edges.

2.2 Local Search Phase of PACO

Both PACO and P-LS consist of three local search operators namely, move,
swap, and 2-exchange. The move operator inserts a customer of one vehicle tour
to another vehicle tour. The swap operator interchanges two customers of two
vehicle tours. The 2-exchange operator is then called every time the move or
swap operators are applied.

Starting from a solution z ∈ S, the local search phase explores the feasi-
ble candidate solutions of the move neighborhood N1 of z. These candidate
solutions are evaluated using dominance relation i.e., all feasible neighboring
solutions are compared and the dominated ones are removed. Each of the re-
maining non-dominated solutions will undergo the same process as z i.e., its
entire neighborhood is searched and all the dominated solutions are removed.
We repeat the entire process of searching the whole neighborhood and removing
the dominated solutions until all solutions in the neighborhood are dominated.
When this happens, we perform the local search process on the set P of all non-
dominated solutions found so far using the swap neighborhood N2. Unless the
termination conditions are not satisfied after performing N2, we apply N1 again
on the Pareto set returned by N2. Since exploring the entire neighborhood of a
given solution is computationally expensive, only a certain number of solutions
are allowed to undergo local search [3].

Global pheromoneupdate. After the local search phase, the global pheromone
update is performed. This update intensifies the pheromone values along the edges
that are found in the best and second best solutions of each generation t. In other
words, the best and second best solutions w.r.t. each objective update the
pheromone values in order to guide the initialization phase at generation t + 1.
The global pheromone update is given by the equation τk

ij = (1−ρ) ·τk
ij +ρ ·�τk

ij

where (i, j) is an edge in the first and/or second best solution, and the quantity
�τk

ij is 15 if (i, j) is an edge in the best and 2nd best solutions of objective k, 10
if (i, j) is an edge only in the best solution of objective k, and 5 (i, j) is an edge
only in the 2nd best solution of objective k.

3 Numerical Results

The numerical analysis was performed on a set of benchmarks described in [9].
The set of benchmarks consists of 7 test instances having 50 to 199 customers and
a single depot. Three of the instances were generated such that the customers

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

190 J.M. Pasia et al.

are uniformly distributed on a map and the remaining instances feature clusters
of customer locations. All test instances have capacity constraints. We run all
our methods on a personal computer with a 3.2 GHz processor; the algorithms
were coded in C++ and compiled using the GCC 4.1.0 compiler.

3.1 Evaluation Metrics and Parameter Settings

Unary quality indicators have become standard tools in assessing the perfor-
mance of different algorithms for bi-objective optimization problems. They com-
plement the traditional approach of using graphical visualization, which may
provide information on how the algorithm works [10]. This study considered
three unary quality indicators namely, the hypervolume indicator [11], the unary
epsilon indicator, and the R3 indicator [12].

The parameters of PACO that are also parameters of P-LS were left un-
changed from their original values as used in [3]. For instance, the initial number
of solutions in each pool S is equal to the number of customers and the size of
the candidate list is given by �0.10 × (# of customers+1)�. The values of ρ, q0,
and τmin are 0.05, 0.75, and 0.00001 respectively.

3.2 Analysis

Ten runs with different random seeds were performed for each of the test in-
stances. Before applying the different unary indicators, all approximation sets
are normalized between 1 and 2. The reference set for each test instance consists
of the points that are not dominated by any of the approximation sets generated
by all algorithms under consideration.

Based on the values of the different unary quality indicators, we observed the
following: First, for instances with 50 and 75 customers (small-size instances),
PACO does not seem to improve the unary quality indicators of P-LS. Second, for
instances with 100 and 120 customers (medium-size instances), one can clearly
see that the hypervolume values of PACO are much better than that of P-LS.
The corresponding unary epsilon and R3 indicator values of PACO are slightly
better than that of P-LS. PACO also recorded the best values for the three
unary quality indicators. Third, PACO greatly improves the quality of solutions
of P-LS in instances with 150 and 199 customers (large-size instances). Their
unary quality indicators are much superior to that of P-LS.

From these findings, one may note that as the test intances grow in size, the
performance of PACO becomes much better than P-LS. This may indicate that
sharing information among populations and among solutions is beneficial for
medium and large instances.

4 Conclusion

In this paper, we improved the Pareto-based local search (P-LS) recently devel-
oped to solve a bi-objective vehicle routing problem. Our improvement is based
on our observation that P-LS did not have any mechanism for allowing its pop-
ulation to share information. For improving P-LS, we used Pareto-ant colony

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Solving a Bi-objective Vehicle Routing Problem 191

optimization (PACO). This metaheuristic allows the exchange of information
among the populations and among the solutions through the pheromone values.
In particular, PACO carries information during the local and global pheromone
updates. PACO is a natural choice for improving P-LS since both have similar
algorithmic structure. Computational results showed that PACO improved the
performance of P-LS with respect to the unary quality indicators, as the size of
the test instance grows bigger.

References

1. Dantzig, G., Ramsey, J.: The truck dispatching problem. Management Science 6,
80–91 (1959)

2. Lenstra, J., Kan, A.: Complexity of vehicle routing and scheduling problem. Net-
works 11, 221–227 (1981)

3. Pasia, J.M., Doerner, K.F., F., H.R., Reimann, M.: A population-based local search
for solving a bi-objective vehicle routing problem. In: Cotta, C., van Hemert, J.
(eds.) Evolutionary Computation in Combinatorial Optimisation - EvoCOP 2007.
LNCS, vol. 4446, pp. 166–175. Springer, Heidelberg (2007)

4. Doerner, K., Gutjahr, W., Hartl, R., Strauss, C., Stummer, C.: Pareto ant colony
optimization: A metaheuristic approach to multiobjective portfolio selection. An-
nals of Operations Research 131, 79–99 (2004)

5. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics - Part
B 26(1), 29–41 (1996)

6. Clarke, G., Wright, J.: Scheduling of vehicles from a central depot to a number of
delivery points. Operations Research 12, 568–581 (1964)

7. Doerner, K., Gronalt, M., Hartl, R.F., Reimann, M., Strauss, C., Stummer, M.:
SavingsAnts for the vehicle routing problem. In: Cagnoni, S., Gottlieb, J., Hart, E.,
Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM
2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 11–20. Springer,
Heidelberg (2002)

8. Jozefowiez, N., Semet, F., Talbi, E.: Parallel and hybrid models for multi-objective
optimization: Application to the vehicle routing problem. In: Guervós, J.J.M.,
Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.)
Parallel Problem Solving from Nature - PPSN VII. LNCS, vol. 2439, pp. 271–280.
Springer, Heidelberg (2002)

9. Christofides, N., Mingozzi, A., Toth, P.: The vehicle routing problem. In:
Christofides, N., Mingozzi, A., Toth, P., Sandi, C. (eds.) Combinatorial Optimiza-
tion, John Wiley and Sons, Chichester (1979)

10. Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of
stochastic multiobjective optimizers. Technical Report TIK-Report No. 214, Com-
puter Engineering and Networks Laboratory, ETH Zurich, Switzerland (2006)

11. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach. IEEE Trans. Evolutionary Computa-
tion 3(4), 257–271 (1999)

12. Hansen, M., Jaszkiewicz, A.: Evaluating the quality of approximations to the non-
dominated set. Technical Report Technical Report IMM-REP-1998-7, Technical
University of Denmark (1998)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Set Covering Approach
for the Pickup and Delivery Problem

with General Constraints on Each Route

Hideki Hashimoto1, Youichi Ezaki2, Mutsunori Yagiura3, Koji Nonobe4,
Toshihide Ibaraki5, and Arne Løkketangen6

1 Graduate School of Informatics, Kyoto University, Kyoto, Japan
2 Canon System Solutions Inc., Japan

3 Graduate School of Information Science, Nagoya University, Nagoya, Japan
4 Faculty of Engineering, Hosei University, Koganei, Japan

5 School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
6 Molde University College, Molde, Norway

hasimoto@amp.i.kyoto-u.ac.jp, yezaki@amp.i.kyoto-u.ac.jp,
yagiura@nagoya-u.jp, nonobe@k.hosei.ac.jp, ibaraki@ksc.kwansei.ac.jp,

Arne.Lokketangen@himolde.no

Abstract. We consider a generalization of the pickup and delivery prob-
lem with time windows by allowing general constraints on each route,
and propose a heuristic algorithm based on the set covering approach, in
which all requests are required to be covered by a set of feasible routes.
Our algorithm first generates a set of feasible routes, and repeats recon-
structing of the set by using information from a Lagrangian relaxation
of the set covering problem corresponding to the set. The algorithm then
solves the resulting set covering problem instance to find a good feasible
solution for the original problem. We conduct computational experiments
for instances with various constraints and confirm the flexibility and ro-
bustness of our algorithm.

1 Introduction

In the pickup and delivery problem with time windows (PDPTW) we are given a
set of requests, where each request signifies the delivery of a load from an origin
to a destination [1,2]. The origin and destination of each request must be visited
by the same vehicle in the order of origin and destination. Each service (i.e.,
pickup at an origin or delivery at a destination) must start within a given time
window. Each vehicle has a capacity and the total amount of loads of a vehicle
cannot exceed its capacity.

In this paper, we consider a generalization of the pickup and delivery problem
with time windows by allowing general constraints on each route (abbreviated as
PDP-GCER). We assume that the constraints on each route satisfy the monotone
property: If a route consisting of a set of requests satisfies a constraint, then any
subroute (i.e., consisting of a subset of the requests visited in the same order) also
satisfies the constraint. We allow any monotone constraint provided that we can

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2007, LNCS 4638, pp. 192–196, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Set Covering Approach for the Pickup and Delivery Problem 193

determine its feasibility in a reasonable time. We also assume the traveling times
satisfy the triangle inequality, which implies that time window constraints satisfy
the monotone property. Note that many constraints that appear in practical
situations are often monotone.

In our algorithm, we formulate the problem as the set covering problem (ab-
breviated as SCP), in which all requests must be covered by a set of feasible
routes. Since enumerating all feasible routes is not realistic for reasonable prob-
lem sizes, the algorithm constructs a set of good routes which is of manageable
size but has sufficient diversity. It constructs the initial set of routes by an inser-
tion method, and then repeats a reconstruction procedure. The reconstruction
procedure estimates the attractiveness of each route by the relative cost of the
Lagrangian relaxation of the set covering problem with the current set of routes
and generates new routes from those with small relative costs by applying five
types of operations. The algorithm then solves the resulting set covering problem
instance to find a good feasible solution of PDP-GCER. This type of approach,
called column generation, tends to be efficient for problems with complicated or
tight constraints. Note that our algorithm is a heuristic algorithm though the
column generation method is usually used for exact algorithms.

2 Problem Definition

Let G = (V, E) be a complete directed graph with vertex set V = {0, 1, . . . , 2n}
and edge set E = {(i, j) | i, j ∈ V, i �= j}. In this graph, vertex 0 is the depot
and other vertices are customers where a load is picked up or delivered. Each
edge (i, j) ∈ E has a traveling cost cij ≥ 0 and a traveling time tij ≥ 0 and
they satisfy the triangle inequalities. Let H = {1, 2, . . . , n} be the given set of
requests. Each request h ∈ H signifies the delivery from the origin h ∈ V to the
destination h + n ∈ V (for convenience, we call a request and its origin by the
same name h). The vertices h and h+n must be visited by the same vehicle, and
h must be visited before h + n. We consider the problem of serving all requests
by a fleet of homogeneous vehicles. Each vehicle must start from the depot and
return to the depot. Let Sr be the set of requests served in route r, mr = |Sr|,
and σr be the sequence of customers to be visited, where σr(k) denotes the kth
customer in r. We assume σr(0) = σr(2mr + 1) = 0.

In this paper, we consider various constraints on each route. Each customer
i ∈ V has a handling time si for the service and a time window [ei, li], where ei

is the release time to serve i and li is the deadline of the service. Each request h
consumes qre

hp units of renewable resources (p = 1, 2, . . . , ρ) while it is loaded, and
consumes qnon

hp′ units of nonrenewable resources (p′ = 1, 2, . . . , π). Each vehicle
has capacities Qre

p for renewable resource p and Qnon
p′ for nonrenewable resource

p′. The total load of each renewable resource p at each customer in route r must
not exceed the capacity Qre

p . The total load of each nonrenewable resource p′

must be within Qnon
p′ . We further introduce the Last-In First-Out (abbreviated

as LIFO) constraint. That is, if a request h is picked up before a request h′,
either h is delivered before the pickup of h′ or after the delivery of h′. Note that

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

194 H. Hashimoto et al.

LIFO constraint satisfies the monotone property. As for the LIFO constraint, we
consider both cases where the constraint is imposed and not. In addition to the
above constraints, any monotone constraint can be introduced, assuming that
we have an algorithm to test its feasibility efficiently.

Let ν be the number of vehicles used in a solution. A feasible solution is a
set {σ1, σ2, . . . , σν} of routes such that each σr satisfies all the given constraints
and each request is serviced exactly once. The objective function is

∑ν
r=1 Cr,

where Cr = α+
∑2mr

i=0 cσr(i)σr(i+1) (i.e., Cr is the sum of a fixed cost α for using
a vehicle and the traveling cost of r).

3 Set Covering Approach

The PDP-GCER can be formulated as the set covering problem SCP(R∗):
min{

∑
r∈R∗ Crxr |

∑
r∈R∗ ahrxr ≥ 1, ∀h ∈ H, xr ∈ {0, 1}, ∀r ∈ R∗} where

R∗ is the set of all feasible routes, and ahr = 1 if request h is in route r ∈ R∗,
otherwise ahr = 0.

Since enumerating all feasible routes is not realistic, we choose a subset R
of manageable size from all feasible routes R∗ and solve the corresponding set
covering problem SCP(R) by an SCP solver. Finally we obtain a solution of
PDP-GCER from the solution of SCP(R). The solution to SCP(R) may contain
more than one route serving the same requests. In this case, we can remove the
over-covered requests one by one in a greedy way until no such request remains.
The main part of our algorithm is how to determine the set R. To obtain a good
solution, R should be chosen very carefully. The generation of a set of routes
consists of two phases. The first phase is the initial construction phase, which
generates a certain number of routes for each request by an insertion method.
The second phase is the reconstruction phase, which chooses good routes from
the current set of routes, and generates their neighboring routes. The algorithm
executes the initial construction phase once, and then repeats the reconstruction
phase until a given time limit is reached.

The initial construction phase starts from the empty set R = ∅, and generates
a certain number of routes for each request by an insertion method. The insertion
method first prepares a route that contains a single request and the depot, and
then repeats inserting requests into the route. If it always inserts a request which
achieves the minimum insertion cost, the resulting set of routes may not have
sufficient diversity. We therefore incorporate randomness in the algorithm based
on the idea often used in GRASP. When the route becomes maximal (i.e., no
more request can be inserted to it), we add it to R.

In the reconstruction phase, the algorithm first calculates the Lagrangian mul-
tipliers by a subgradient method. The Lagrangian relaxation problem of SCP(R)
for a given nonnegative Lagrangian multiplier vector u= (u1, u2, . . . , un) is de-
fined as L(u) = min{

∑
r∈R cr(u)xr +

∑
h∈Huh | xr ∈ {0, 1}, ∀r ∈ R} where

cr(u) = Cr −
∑

h∈H ahruh is the relative cost associated with r. It is known
that L(u) gives a lower bound on the optimal value of problem SCP(R). If a good
Lagrangian multiplier vector u is obtained, the relative cost cr(u) gives reliable

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Set Covering Approach for the Pickup and Delivery Problem 195

information on the attractiveness of fixing xr = 1 because any r with xr = 1
in an optimal solution of SCP tends to have a small cr(u) value. The algorithm
chooses routes with small relative costs for each request in order to generate new
routes from them by applying the following five types of operations. We introduce
three methods to generate neighboring routes of a route r. An insertion operation
inserts a request h into r at the best position. This operation is applied for each
request (which is not in r). A deletion operation deletes one request from r. This
operation is applied for each request in r. A swap operation deletes one request
from r and then inserts one request which is not in r at the best position. This
operation is applied for all pairs of a request in r and another not in r. All feasi-
ble routes obtained by these operations are generated. In addition, the algorithm
uses two operations to generate neighboring routes of two routes r and r′. A 2-
opt∗ operation is applied to two routes r and r′ that satisfy Sr ∩ Sr′ = ∅. This
operation first constructs a route by concatenating a former part of r and a latter
part of r′ at positions k and k′ respectively. As the resulting route may not satisfy
all constraints, it then modifies the route by insertion and/or deletion operations
to satisfy the violated constraints. For given two routes r and r′, a mixing op-
eration starts from σmix := σr and repeats modifying the current route σmix so
that the set of requests in it becomes closer to that of σr′ by inserting or deleting
different requests between the two routes σmix and σr′ . All routes obtained during
the modifications are considered as candidates to be added into R.

4 Computational Experiment

The algorithm was coded in C and run on a PC (Intel Pentium4, 2.8 GHz, 1 GB
memory). We compared our algorithm with a metaheuristic algorithm coded
in reference to the algorithm proposed for PDPTW by Li and Lim [3]. It is
based on the simulated annealing and tabu search procedure based on the same
objective function as ours. We modify it so that it can deal with PDP-GCER.
The modified algorithm executes the local search in the feasible region under
the constraints of PDP-GCER.

We generated the PDP-GCER instances consisting of six groups GC1–GC6
from a part of Li and Lim’s PDPTW instances [3] by adding various constraints
to them where each group contains 18 instances. In Table 1, columns “ρ” and
“π” represent the number of renewable and nonrenewable resources. Column
“TW” shows the information about the time window constraint. In GC4 and
GC5, we set all the time windows (i.e., that of all customers and the depot)
to [0, ∞). On the other hand, in GC3, we shortened the original time windows
by 4%. For the rest (i.e., GC1, GC2 and GC6), we adopted the time windows
of the original instances. We imposed the LIFO constraint to GC2 and GC5 as
shown in the LIFO column by 1. The time limit of constructing routes is set
to 2400 seconds and the time limit of solving the set covering problem is set to
1200 seconds for our algorithm. We set the time limit to 3600 seconds for the
metaheuristic algorithm.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

196 H. Hashimoto et al.

Table 1. Comparison for GC1–GC6

Resource Ours LS
INST ρ π TW LIFO CNV CDIST CNV CDIST
GC1 1 0 – 0 208 65624.54 224 72422.65
GC2 3 1 – 1 278 95016.41 313 92170.04
GC3 1 0 −4% 0 142 48421.68 155 56234.36
GC4 1 1 [0, ∞) 0 234 79763.98 212 59545.98
GC5 1 1 [0, ∞) 1 238 84378.57 212 55065.95
GC6 2 0 – 0 271 84785.49 276 82716.75

Column “LS” represents the results of metaheuristic algorithm, column “CNV”
means the cumulative number of vehicles and column “CDIST” means the cu-
mulative traveling cost. The results show that for GC1, GC2, GC3 and GC6
whose instances have multiple constraints or severe constraints, our algorithm
works efficiently, but for GC4 and GC5 whose instances have weaker constraints,
the metaheuristic algorithm works better than ours.

5 Conclusion

We generalized the pickup and delivery problem with time windows by allowing
general constraints, and propose an algorithm that generates a set of feasible
routes and applies the set covering approach. The algorithm constructs an initial
set of routes by an insertion method and reconstructs the set of routes repeatedly
by modifying the routes using various types of neighborhood operations while
reducing the candidate routes by utilizing the Lagrangian relative costs. The
computational results indicated that our algorithm works more efficiently than
a metaheuristic algorithm for instances having tighter constraints.

References

1. Bent, R., Hentenryck, P.V.: A two-stage hybrid algorithm for pickup and delivery ve-
hicle routing problems with time windows. Computers and Operations Research 33,
875–893 (2006)

2. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transportation science 40(4), 455–
472 (2006)

3. Li, H., Lim, A.: A metaheuristic for the pickup and delivery problem with time
windows. International Journal on Artificial Intelligence Tools 12(2), 173–186 (2003)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Study of Neighborhood Structures for the
Multiple Depot Vehicle Scheduling Problem�

Benôıt Laurent1,2 and Jin-Kao Hao2

1 Perinfo SA, Strasbourg, France
2 LERIA, Université d’Angers, Angers, France

blaurent@perinfo.com, hao@info.univ-angers.fr

Abstract. This paper introduces the ”block moves” neighborhood for
the Multiple Depot Vehicle Scheduling Problem. Experimental studies
are carried out on a set of benchmark instances to assess the quality of
the proposed neighborhood and to compare it with two existing neigh-
borhoods using shift and swap. The ”block moves” neighborhood can be
beneficial for any local search algorithm.

1 Introduction

Given T = {t1, t2, . . . , tn} a set of trips, a fleet of vehicles housed in K = {n +
1, n + 2, . . . , n + m} depots, each having a limited capacity rk, the Multiple
Depot Vehicle Scheduling Problem (MDVSP) consists of determining a least-cost
feasible vehicle schedule. Each trip ti is defined by an origin and a destination
with associated starting and ending times (si, ei). We denote by τij , the travel
time from the end location of trip ti to the starting location of trip tj . Two trips
are said compatible if tj can be achieved right after ti by the same vehicle, i.e.
ei + τij ≤ sj . Transfers without passengers are called deadhead trips. Transfers
either to come from or return to the depot are the pull-out and pull-in trips
respectively. The set of vehicles can also be defined by V = {1, 2, . . . , p}. The fleet
is supposed to be homogeneous such that trips can be performed by any vehicle.
In a valid schedule, the trips performed by each vehicle are pairwise compatible.
The vehicles start from and return to their depot. Finally, the number of vehicles
at each depot does not exceed the depot capacity.

The main objective of the MDVSP is to minimize the number of vehicles in
use. Other objectives aim to avoid non-commercial tasks that induce traveling
and/or waiting costs. They are denoted by cij for deadhead trips connecting ti
and tj , by cki for the pull-out trip starting at depot d to reach trip ti and by
cjk for the pull-in trip from tj to return to the depot d. Note that fixed vehicle
costs are added to pull-in and pull-out trips costs.

The MDVSP is NP-hard when two depots at least are considered [1]. The
literature offers a panel of solution methods. Early works focused on heuristic
algorithms. Exact algorithms have been proposed since the end of the 1980s (for

� Partially supported by the French Research Ministry (CIFRE No. 176/2004).

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2007, LNCS 4638, pp. 197–201, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

198 B. Laurent and J.-K. Hao

a thorough survey, see [2] and [3]. In [4], Large Neighborhood Search (LNS) and
Tabu Search (TS) were employed for the first time on the MDVSP.

The main contribution of this paper is the introduction and an in-depth study
of a new neighborhood schema for the MDVSP. This new neighborhood, called
”block moves”, is based on the notion of ejection chains. We report comparative
studies of the two neighborhoods used in the TS algorithm of [4] and of our
”block moves” neighborhood.

2 Solution Approach

2.1 Decision Variables, Domains and Constraints

The set of decision variables is the set of trips T , the domain Di associated to
each variable ti corresponding to vehicles. A configuration is an assignment of
vehicles in V to trips in T . It can be represented as a vector of integers:

σ = (σ(t1), σ(t2), . . . , σ(tn)) (σ ∈ Vn)

The search space Ω is then defined as the set of all such assignments.
To obtain a feasible configuration σ, the compatibility constraint between

trips must be satisfied: ∀ (ti, tj) ∈ T 2, σ(ti) = σ(tj), ei + τij ≤ sj

2.2 Evaluation Function

The evaluation function measures the quality of a solution σ. In addition to the
costs previously described, it comprises a penalty term for constraint violations.

∀σ ∈ Ω, f(σ) = wcfc(σ) + fo(σ) (1)

where wc > 0 is the weight associated to the constraints violations, fc the number
of violations detected in σ, fo the value of the objective function on σ.

2.3 Initial State

The initial solution is built by means of a greedy algorithm, relying on a Forward
Checking procedure. At each step, the choice of variables follows the min-domain
heuristic, ties being broken randomly. Each selected variable (a trip) is labeled
by a possible vehicle with a priority given to already employed vehicles.

3 Neighborhood Structures

3.1 Existing Neighborhood Structures

We first describe the neighborhoods, Nshift and Nswap, embedded in the Tabu
Search of [4]. In Nshift, a neighbor is obtained by transferring a trip to another
vehicle. The swap move implies two trips ti and tj , accomplished by two different
vehicles v and v′. It consists in moving ti from v to v′ and tj from v′ to v. The
respective size of Nshift and Nswap is O(np) and O(n2). Each time a change
concerns the first or the last trip of a vehicle, we check if a transfer of the entire
sequence of trips to an available vehicle of another depot would be profitable.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Study of Neighborhood Structures 199

3.2 Block-Moves Neighborhood

The block-moves neighborhood is a parameterized structure, based on ejection
chains. The principle of ejection chains was introduced in [5].

Let bl be the size of the ”block”, that is the number (bl ≥ 1) of trips that will
initiate the sequence of moves. Our neighborhood mechanism, called Nbl moves,
consists in moving bl consecutive trips handled by the same vehicle v to another
vehicle v′. These ejection moves often cause constraints violations that will trig-
ger repair attempts. For each conflicting trip, we scan and retain the best vehicle,
that may receive it. If no such vehicle exists, the conflicts remain. As in Nshift

and Nswap, complete transfers of trips to vehicles belonging to other depots are
evaluated. The size of Nbl moves(σ) depends on the number of vehicles running
at least bl trips in the current configuration σ.

The rationale behind Nbl moves is the following. First, it prevents the search
from being stuck in local optima because of some conflicts that could be repaired
as soon as they arise. Second, behind the notion of ”block moves”, we aim at
preserving the good properties of the configuration, typically the trips that fit
well together.

4 Computational experiments

4.1 Benchmarks and Experimental Settings

Our experiments rely on the benchmarks proposed in [4] and generated as in [6].
In these instances, n ∈ {500, 1000, 1500}, m ∈ {4, 8} and the cost incurred for
the use of a vehicle is 10000. We heavily penalized constraints violations (100000
each) to discourage the exploration of infeasible regions.

Nbl moves is by definition parameterized by bl. In our experiments, bl ranges
from 1 to 5. Enlarging this domain was considered useless since the average
number of trips per vehicle is approximately equal to 4.2.

4.2 Statistical Study of the Neighborhoods

To assess the performance differences between Nshift, Nswap and Nbl moves, we
computed some statistics on the neighborhood of the initial solutions issued as
described in section 2. Table 1 gathers the average values (over 20 independent
runs) on the instances m4n1000s0 to m4n1000s4, arbitrary chosen since all results
were similar.

The second column displays the size of the neighborhoods, the two next ones
the percentages of improving (Imp.) and deteriorating moves (Det.) respectively.
The percentage of plateau moves, almost negligible, is omitted. The five next
columns focus on the improving moves. They contain the values of the average
improvement (Avg), the standard deviation (Sd), the best improvement (Best),
the Hamming distance (dH) between σ and σ′ and the associated Standard
deviation (Sd). The average value and the distance to the best known solution
are indicated in the table caption (respectively, Avg value and Gap). These

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

200 B. Laurent and J.-K. Hao

Table 1. m4n1000 (heuristic) - Avg. Value = 2574683.67 - Gap (%) = 3.88

Improvements
Size Imp. (%) Det. (%) Avg Sd Best dH Sd

shift 429000 0.41 99.34 167.50 (156.24) 1036.22 2.71 (2.52)
swap 497582 0.17 99.83 186.27 (177.59) 1161.66 3.67 (2.34)

1 moves 427052 6.64 93.30 275.09 (245.77) 2046.83 4.95 (3.04)
2 moves 323991 5.01 94.93 326.66 (289.90) 2144.54 7.15 (3.22)
3 moves 204345 4.66 95.02 321.09 (304.14) 2158.02 8.12 (3.55)
4 moves 113503 5.07 94.48 296.62 (302.21) 2094.69 8.42 (3.67)
5 moves 58289 5.54 94.16 299.03 (304.72) 2018.69 9.21 (3.73)

 2.54e+006

 2.55e+006

 2.56e+006

 2.57e+006

 2.58e+006

 2.59e+006

 2.6e+006

 2.61e+006

 2.62e+006

 0 100000 200000 300000 400000 500000

E
va

lu
at

io
n

fu
nc

tio
n

Iterations

m4n1000s0 (heuristic)

1_moves
2_moves

3_moves
4_moves

5_moves
swap

shift

Fig. 1. Evolution of the cost function according to the neighborhood mechanism

percentages must not be compared to those of [4] in which solutions values have
been purged of vehicles costs. Here, all costs are taken into account.

We observe that Nbl moves clearly outperforms the other neighborhoods inde-
pendently of the value of bl. The probability of obtaining an improving neighbor
in Nbl moves is much higher than in Nshift or Nswap. Moreover, the average and
best improvements procured by Nbl moves are about twice superior to the values
related to the shift and swap neighborhoods.

To further investigate the neighborhoods behavior, we observe the profile of
the evaluation function during the search of a first improvement Descent1 algo-
rithm, using the competing neighborhoods. The stop criterion is based on the
number of iterations elapsed since the last improvement. This number was set
to the size of the neighborhood. Figure 1 shows, for the instance m4n1000s0, the
mean evolution (on 20 runs) of the evaluation function (y-axis) during a search
process (x-axis). One observes that the Nbl moves neighborhood always lead to
a better convergence with respect to the Nshift or Nswap neighborhoods.

Concerning the influence of the bl parameter, Figure 1 shows that it might
be not worthwhile to consider blocks of size strictly greater than 3 for these

1 A best improvement descent would be too time-comsuming.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Study of Neighborhood Structures 201

instances. This value is certainly relative to the average number of trips per
vehicle (approximately 4.2).

Finally, let us indicate making use of a portfolio of 3 simple Descent algo-
rithms based on the bl moves neighborhood (bl ∈ {1, 2, 3}), cyclically applied in
a diversification scheme (see [7]), we obtained results of good quality. For exam-
ple, on the instances containing 4 depots and 500 trips, the average gap from
optimality is of 6.195 again 10.919 for TS [4].

5 Conclusion

In this paper, we investigated for the first time in the context of the MDVSP,
a fundamental component of any local search algorithm, namely the neighbor-
hood structure. We designed a new parameterized neighborhood schema, called
”block-moves” and compared it with existing neighborhoods.

The computational study carried out on a set of artificial instances clearly
shows the advantage of our ”block-moves” neighborhood. A portfolio of the
most effective neighborhood structures is being exploited to tackle the MDVSP
with promising results. We are convinced that integrating the ”block-moves”
neighborhood in other frameworks can be beneficial.

References

1. Bertossi, A., Carraresi, P., Gallo, G.: On some matching problems arising in vehicle
scheduling models. Networks 17, 271–281 (1987)

2. Odoni, A.R., Rousseau, J.M., Wilson, N.H.: Models in urban and air transportation,
vol. 6, pp. 107–150. Elsevier Science, North-Holland, Amsterdam (1994)

3. Desaulniers, G., Hickman, M.: Public transit, pp. 69–120. Elsevier Science, North-
Holland, Amsterdam (2007)

4. Pepin, A.S., Desaulniers, G., Hertz, A., Huisman, D.: Comparison of heuristic ap-
proaches for the multiple vehicle scheduling problem. Technical Report EI2006-34,
Economie Institute, Erasmus University Rotterdam, Rotterdam (2006)

5. Glover, F.: Ejection chains, reference structures and alternating path methods for
traveling salesman problems. Discrete Applied Mathematics 65(1-3), 223–253 (1996)

6. Carpenato, G., Dell’Amico, M., Fischetti, M., Toth, P.: A branch and bound al-
gorihm for the multiple depot vehicle scheduling problem. Networks 19, 531–548
(1989)

7. Di Gaspero, L., Schaerf, A.: Neighborhood portfolio approach for local search applied
to timetabling problems. Journal of Mathematical Modeling and Algorithms 5(1),
65–89 (2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Local Search in Complex Scheduling Problems

Thijs Urlings and Rubén Ruiz

Instituto Tecnológico de Informática, Universidad Politécnica de Valencia,
Valencia, Spain

thijs urlings@iti.upv.es, rruiz@eio.upv.es

Abstract. In this paper different local search procedures are applied to
a genetic algorithm for a complex hybrid flexible flow line problem. Gen-
eral precedence constraints among jobs are taken into account, as are
machine release dates, time lags and sequence dependent setup times;
both anticipatory and non-anticipatory. Although closely connected to
real-world problems, this combination of constraints is hardly treated in
the literature. This paper presents a study of the behaviour of local search
for such a complex problem. A combination of the local search variants
is presented. Comprehensive statistical experiments indicate that sub-
stantial improvements in solution quality can be reached.

1 Introduction

Local search is a widely applied and praised solution improvement technique.
Many heuristics and meta-heuristics in combinatorial optimization employ such
techniques. Some researchers have tried to fill the gap between the operations re-
search literature related to scheduling, where relatively easy problems are solved
with high level algorithms, and the production literature, where myopic algo-
rithms such as dispatching rules are implemented for more realistic problems. In
these cases, some realistic constraints are considered but still the problems ap-
proached are either not general enough or specific to some production scheduling
scenarios. Additionally, the issue of how local search operators behave in such
complex problems appears to be unaddressed.

This paper addresses a heavily constrained hybrid flexible flow line (HFFL)
problem. General precedence constraints among jobs are taken into account.
Release dates are given for the machines, as are time lags between stages. This
problem also considers sequence dependent setup times that can be either an-
ticipatory or non-anticipatory. This combination of constraints implies a close
connection to real-world industrial problems. For the considered problem, various
local search neighbourhoods are compared. A combination of the neighbourhood
searches within a genetic algorithm is also tested. The algorithm called SGA,
presented and evaluated in Urlings et al. [3], is used as a basis. The solution rep-
resentation consists of one job sequence for all stages and a machine assignment
rule.

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2007, LNCS 4638, pp. 202–206, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Local Search in Complex Scheduling Problems 203

2 Problem Description

The hybrid flexible flow line problem can be described as follows (see also Ruiz
et al. [1]): Given is a set of jobs N = {1, . . . , n} to be processed on a production
line, consisting of a set of stages M = {1, . . . , m}. Each stage i, i ∈ M contains
a set of unrelated machines Mi = {1, . . . , mi}.

The flexibility of the problem implies that jobs might skip stages. Each job
j ∈ N visits a set of stages Fj ⊆ M . The processing time for job j on machine l
at stage i is denoted pilj . We consider the following constraints: Eij ⊆ Mi is the
set of eligible machines for job j in stage i; Pj ⊂ N gives set of predecessors of
job j; rmil expresses the release date for machine l in stage i; lagilj models the
time lag for job j between stage i and the next stage to be visited, when job j
is processed on machine l at stage i; Siljk denotes the setup time between the
processing of job j and job k on machine l inside stage i and Ailjk is a binary
parameter that indicates whether the corresponding setup is anticipatory or not.
The objective is to minimize the largest completion time, known in literature as
makespan. As reasoned in Ruiz et al. [1], the problem is NP-Hard.

3 Local Search Variants

Probably the most important decision in local search design is the definition of
the neighbourhood. Large neighbourhoods are powerful, but time consuming.
The smallest neighbourhood we implement is Adjacent Interchange (AI), which
consists in interchanging pairs of adjacent jobs. The pair of adjacent jobs whose
interchange causes the largest decrease of the makespan, is interchanged. Because
of precedence relationship, the number of neighbours is less or equal n − 1.

To increase the neighbourhood size one can check, besides the adjacent posi-
tion, also the position at a distance of two (DoT). In our implementation, if the
job at position j goes to position j + 2, both the job at position j and at j + 1
are shifted one position to the front. Of course precedence relationships have to
be taken into account again. Therefore, a maximum of (n−1)+(n−2) = 2n−3
neighbours are considered at each neighbourhood evaluation.

A more extensive search is allowed if all positions for a job are evaluated
(APJ). For precedence constraints, the number of reinsertion positions is gener-
ally lower than n − 1; the job can only be inserted after its last predecessor and
before its first successor. The permutation with the best makespan value is used
as the new permutation.

4 Accelerations

As many similar permutations have to be compared, it seems straightforward
to implement some accelerations. The faster a local search is, the more searches
can be done (or generations made by the GA) per unit of time. However, the
complexity of the problem we consider limits the possibilities to accelerate. The
accelerations by Taillard [2], for example, are not applicable.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

204 T. Urlings and R. Ruiz

What can be done is using the part of the permutation that is unaffected by the
movements. Suppose that the jobs in the positions j and j + 1 are interchanged.
Then, the tasks of the jobs until position j − 1 remain unaffected (for j > 1).

Note that this only holds for non look-ahead machine assignment rules. Fur-
thermore, precedence constraints among jobs complicate the matter entirely.
Forgetting about precedence constraints for the moment, the number of job cal-
culations without accelerations for AI is (n − 1)n. With accelerations, we need
to calculate the complete schedule for the first two neighbours, where respec-
tively the first two and the second and the third job are interchanged. The third
neighbour has the same job in the first position as the second neighbour and can
use its completion times. The total number of job calculations is consequently
n + n + (n − 1) + . . . + 3 = n(n + 1)/2 + n − 3. For large n this gets close to
50%. For the other neighbourhoods, comparable results are to be found. The
precedence constraints, however, reduce the time advantage. Suppose that, in
an example with n jobs (n divisible by 3 without loss of generality), only the job
at position n/3 and at position n/2 can be interchanged with their neighbours.
Then n + (1 + 2n/3) = 5n/3 + 1 job calculations have to be made, which is a
time advantage of only about 1/6 compared to the regular 2n calculations. The
advantage in practice is studied next.

5 Experimental Evaluation

For our experiments we use a subset of the benchmark provided by Ruiz et al.
[1], publicly available at www.upv.es/gio/rruiz/ with the best known solution
values. The subset contains the 192 large instances with 50 or 100 jobs.

All experiments are executed on a Pentium IV computer with a single 3.0
GHz processor and 1 GB of RAM memory. The algorithm is implemented in
Delphi with the 2006 compiler and run under Windows XP Professional.

5.1 Comparison of Local Search Techniques

To study the influence of the accelerations and the effectiveness of the local search
techniques, we run 800 generations of the SGA and then apply local search to the
final population. Local search is repeated until the solutions are not improved
anymore. APJ is applied to all jobs in random order. For the 800 generations,
computation times range from 30 seconds for the smaller, till 15 minutes for the
largest instances. We carry out tests with and without accelerations.

In Table 1 we show the results. The impact of the accelerations depends on
the size of the neighbourhood. For APJ, an average time saving of about 28.5%
is measured. The DoT local search with accelerations is about 40.1% faster than
the version without accelerations. For AI this is even 46.8%.

The displayed makespan deviation is the average relative deviation from the
best known solution value. Relative improvement is the relative difference be-
tween this last deviation and the average deviation without local search. As
expected, smaller neighbourhood sizes have less possibilities to improve solu-
tions, but have a large advantage in computation time.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

www.upv.es/gio/rruiz/

Local Search in Complex Scheduling Problems 205

Table 1. Average Relative Percentage Deviation in time and makespan for the local
search variants

LS variant Time dev. orig. Time dev. acc. Makespan dev. Rel. improvement

no LS - - 4.863 -
AI 12.35 6.57 4.622 4.948

DoT 28.48 17.07 4.544 6.543
APJ 1002.97 717.62 3.917 19.439

5.2 A Compound Local Search Method

In the previous section we have applied local search to the final population as
a exploratory measure to observe the potential of the technique. In this section
we are interested in embedding the local search in the genetic algorithm itself.
Each time after creating two new individuals in the SGA algorithm, local search
is applied with probability pLS. The procedure is not applied to the (possibly
poor) new individuals, but to an already accepted individual in the population.

AI-search is applied to one of the individuals with the best makespan. If no
improvement is made, in the next iteration AI-search is applied to one of the indi-
viduals with the second-best makespan value. When all makespans have had one
individual AI-investigated, the investigated individual with lowest makespan is
taken for DoT-search. Once all makespan values have had their individual DoT-
searched, APJ is applied on a random job for the same individuals in the same
order. When all jobs have been investigated, we know that the individuals are
local optima for all implemented LS neighbourhoods and we start investigating
the remaining individuals of the population, with makespans equal to the locally
optimal individuals.

The number of individuals in the population with the same makespan plays
an important role in this procedure. A new individual is only accepted if it is
better than the worst individual in the population and if the permutation does
not exist in the population yet and if the number of individuals with this same
makespan does not exceed a given number max#sol. Preliminary tests show
that applying LS only after half of the allowed CPU time is far more efficient
than applying LS directly from the start. It seems plausible to allow the SGA
to carry out the initial coarse search which is in turn also faster than with LS.

To test the configuration, we compare pLS equal to 0, 10% and 100% and
max#sol equal to 1, 15 and 200 (total population). The algorithm is executed
five times for each combination. We define the allowed running time as 25 · n ·∑

i mi milliseconds. In Figure 1 the interactions and the 99% Tukey confidence
intervals are shown. The best results are obtained for pLS =10%. With respect to
100%, a smaller part of the running time is consumed and the genetic algorithm
has more power. A maximum number of 15 individuals with the same makespan
is optimal. Although some of the confidence intervals overlap, using local search
decreases the relative makespan deviation a 5.0% from 4.00% to 3.80%, using
the same CPU time. The improvement compared to the original algorithm is
10.9%, which is in turn a significant improvement. As a preliminary conclusion,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

206 T. Urlings and R. Ruiz

max#sol

A
v

rg
.
R

el
at

iv
e

P
er

ce
n

ta
g

e
D

ev
ia

ti
o

n pLS

0%

10%

100%

3.6

4.0

4.4

4.8

5.2

5.6

1 15 200

Fig. 1. Interaction between local search probability and max#sol

the more elaborated local search has improved the results substantially when
compared under the same stopping CPU time.

6 Conclusions

In this paper, we have evaluated various local search neighbourhood implementa-
tions for a highly constrained hybrid flexible flowshop problem. We have shown
the limited possibilities of applying regular accelerations and the efficiency of
these. The consequences of each neighbourhood search are shown.

A new compound way of applying local search within an algorithm is presented
and an important adaptation is made to the original method. Stopping on passed
CPU time, however, results in a 5.0% solution quality improvement when local
search is applied. The complexity of the problem is a clear disadvantage for local
search techniques. However, due to a change in the acceptance criterion, a sig-
nificant total improvement of 10.9% is made compared to the original algorithm.
Contrary to simple scheduling problems, where straightforward local search tech-
niques are frequently applied, it seems that such techniques are neither easy nor
apparently as profitable when applied to much more complex environments. As a
result, more focused research efforts are needed in this direction.

References

1. Ruiz, R., Sivrikaya Şerifoğlu, F., Urlings, T.: Modeling realistic hybrid flexible flow-
shop scheduling problems. Computers and Operations Research (in press)

2. Taillard, E.: Some efficient heuristic methods for the flow shop sequencing problem.
European Journal of Operational Research 47, 65–74 (1990)

3. Urlings, T., Ruiz, R., Sivrikaya Şerifoğlu, F.: Genetic algorithms for complex hybrid
flexible flow line problems. Departamento de Estad́ıstica e Investigación Opera-
tiva Aplicadas y Calidad. Universidad Politécnica de Valencia, Technical Report
DEIOAC-2007-02 (March 2007)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Multi-sphere Scheme for
2D and 3D Packing Problems�

Takashi Imamichi and Hiroshi Nagamochi

Department of Applied Mathematics and Physics, Graduate School of Informatics,
Kyoto University, Kyoto, Japan

{ima,nag}@amp.i.kyoto-u.ac.jp

Abstract. In this paper, we deal with a packing problem that asks to
place a given set of objects such as non-convex polytopes compactly
in R

2 and R
3, where we treat translation, rotation and deformation as

possible motions of each object. We propose a multi-sphere scheme that
approximates each object with a set of spheres to find a compact layout
of the original objects. We focus on the case that all objects are rigid, and
develop an efficient local search algorithm based on a nonlinear program
formulation.

Keywords: packing problem, multi-sphere scheme, iterated local search,
unconstrained nonlinear program.

1 Introduction

In this paper, we deal with a packing problem that asks to place a given set of
objects such as non-convex polytopes or objects with curved surfaces compactly
in a bounded space in R

2 and R
3, where we treat translation, rotation and

deformation as possible motions of each object. The problem includes various
types of packing problems such as the circle/sphere packing problem, the non-
convex polygon packing problem and a problem of finding feasible layouts in
protein docking. We propose a general approach, called multi-sphere scheme,
for designing efficient algorithms that compute compact layouts in the packing
problem. In the multi-sphere scheme, we first approximate each object by a set of
spheres, and we then search for the positions of all these spheres that minimize an
appropriate penalty function. Geometric computations such as collision detection
and penetration depth [1] become significantly simpler if all objects are sets of
spheres.

In this paper, we focus on the penalized rigid sphere set packing problem that
asks to pack a family of sphere sets in our multi-sphere scheme. The container is
a rectangle or a circle for R

2 and a cuboid or a sphere for R
3, and only translation

and rotation by an arbitrary angle are allowed as motions of each object.
� This research was supported by Research Fellowships of the Japan Society for the

Promotion of Science for Young Scientists and a Scientific Grant in Aid from the
Ministry of Education, Science, Sports and Culture of Japan.

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2007, LNCS 4638, pp. 207–211, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

208 T. Imamichi and H. Nagamochi

Numerous types of packing problems have been studied so far. The problem of
packing circles/spheres, which can be regarded as a special case of the penalized
rigid sphere set packing problem, has many variations, such as packing circles
into a circle [2], packing circles into a rectangle [3], and sphere packing problem in
R

2 or a higher dimensional space [4]. Wang et al. [2] formulated an unconstrained
nonlinear program of the problem, and designed an algorithm by combining a
steepest descent method and a procedure for perturbing a layout.

The irregular strip packing problem has been well studied recently. The prob-
lem asks to place polygons in R

2 inside a rectangular container so that the length
of the container is minimized, where translations and rotations by fixed degrees
such as 90 degrees and 180 degrees are usually allowed. Imamichi et al. [5] pro-
posed a separation algorithm based on a nonlinear program and incorporated
the separation algorithm and a swapping algorithm of two polygons in their it-
erated local search algorithm. Milenkovic [6] uses a linear program to compute
how to translate and rotate polygons in a given layout in R

2 so as to reduce the
length of the container.

Modeling an object by a sphere set is already used in several applications.
Ferrez [7] proposed a framework of physical simulation of a set of spheres in R

3

and a fast algorithm to detect the collisions of spheres.
To design a local search algorithm for penalized rigid sphere set packing prob-

lem, we formulate the problem as an unconstrained nonlinear program such that
the quasi-Newton method can be applied. We then construct an iterated local
search algorithm based on the approach by Imamichi et al. [5].

2 Penalized Rigid Sphere Set Packing Problem

This section formulates the penalized rigid sphere set packing problem for R
3,

which asks to place a collection O = {O1, . . . , Om} of m objects into a con-
tainer C, which is a sphere or a cuboid. Each object Oi consists of ni spheres
{Si1, . . . , Sini}, and has a reference point ri. Let cij be the vector that represents
the center of sphere Sij , rij be the radius of Sij (i = 1, . . . , m; j = 1, . . . , ni),
and N =

∑m
i=1 ni. We let ri =

∑ni

j=1 cij/ni, which represents the center of Oi.
For a set of points S, let S be the complement of S, cl(S) be the closure of S,
∂S be the boundary of S, and int(S) = S \ ∂S be the interior of S.

After translating object O by translation vector (x, y, z)T, the resulting object
is described as O⊕(x, y, z)T = {x+(x, y, z)T | x ∈ O}, where T denote the trans-
pose of a vector/matrix. After rotating object O by z-x-z Euler angles (φ, θ, ψ),
the resulting object is described as R3(φ, θ, ψ) O, where R3(φ, θ, ψ) represents a
rotation matrix. We define a function Λαrot that gives the placement of object Oi

by Λαrot(Oi, vi) = (R3(αrotφi, αrotθi, αrotψi) (Oi ⊕ (−ri))) ⊕ ((xi, yi, zi)T + ri),
where αrot is a positive parameter that represents sensitivity of rotations. Let
Sij(vi) = Λαrot(Sij , vi) and cij(vi) be the center of Sij(vi). The penetra-
tion depth [1] of two objects O and O′ is defined by δ(O, O′) = min{‖x‖ |
int(O) ∩ (O′ ⊕ x) = ∅, x ∈ R

3}, where ‖ · ‖ denotes the Euclidean norm.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Multi-sphere Scheme for 2D and 3D Packing Problems 209

We define penalties of the penetration and protrusion by using the penetration
depth: The penalized rigid sphere set packing problem for R

3 is defined by

minimize Frigid(v) = wpenFpen(v) + wproFpro(v),

subject to v = (v1, . . . , vm) ∈ R
6m,

(1)

where Fpen(v) =
∑

1≤i<k≤m

∑ni

j=1
∑nk

l=1 fpen
ijkl(v), Fpro(v)=

∑m
i=1

∑ni

j=1 fpro
ij (v),

fpen
ijkl(v) = (δ(Sij(vi), Skl(vk)))2, fpro

ij (v) = (δ(Sij(vi), cl(C)))2. fpen
ijkl denotes

the penetration penalty of two spheres Sij and Skl, fpro
ij denotes the protrusion

penalty of sphere Sij , and wpen and wpro are positive parameters. The penalized
rigid sphere set packing problem for R

2 can be formulated analogously. The
computation of (1) takes O(N2) by a naive algorithm; the computation of Fpen
is the bottleneck.

2.1 Computation of the Gradient of the Objective Function

This subsection shows how to compute ∇Fpen(v). First, ∂fpen
ijkl(v)/∂va = 0

(a ∈ {1, . . . , m} \ {i, k}). Assume that a pair of spheres Sij(vi) and Skl(vk) in-
tersect each other. Let (xij , yij , zij)T = cij(vi). If cij(vi) �= ckl(vk),

∂fpen
ijkl(v)
∂xi

= 2βpen(xij − xkl),

∂fpen
ijkl(v)
∂φi

= 2βpen(cij(vi) − ckl(vk))T · ∂R3(αrotφi, αrotθi, αrotψi)
∂φi

· (cij − ri).

where βpen = −δ(Sij(vi), Skl(vk))/‖cij(vi)−ckl(vk)‖. The other differentials are
calculated in the same way. In the case of cij(vi) = ckl(vk), we use subgradients.
We can handle ∇Fpro(v) analogously. Thus we can compute ∇Frigid(v).

3 Algorithm

This section describes our iterated local search algorithm ILS Rigid. Given a
layout (O, C) as an initial solution to the penalized rigid sphere set packing
problem (1), our local search algorithm RigidQN(O, C) returns a locally op-
timal solution computed by applying the quasi-Newton method. RigidQN has
three parameters wpen, wpro, and αrot: wpen (wpro) denotes the weights of the
penetration penalty (resp. the protrusion penalty), and αrot denotes the sensi-
tivity of rotations. We let wpen = wpro = 1 and αrot = 10−2 in our experiments.

ILS Rigid(O, C) generates an initial solution by placing objects O randomly
so that the reference points are in the container C, rotates the objects randomly
and applies RigidQN to the initial layout. ILS Rigid maintains the incumbent
solution Oopt that minimizes the objective function Frigid of (1), which will be
used for generating the next initial solution. ILS Rigid first perturbs the incum-
bent solution by swapping two randomly chosen objects O1 and O2 and rotates
them randomly. Then, ILS Rigid translates and rotates objects by invoking
RigidQN. ILS Rigid repeats these operations until a time limit.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

210 T. Imamichi and H. Nagamochi

4 Computational Results

This section reports the results on computational experiments. We implemented
our algorithm ILS Rigid in C++, compiled it by GCC 4.0.2 and conducted
computational experiments on a PC with an Intel Xeon 2.8GHz processor (Net-
Burst) and 1GB memory. We adopt a quasi-Newton method package L-BFGS [8]
for algorithm RigidQN.

Table 1. Information of instances

2D
Instance TNO TNS ANS Width Height
dighe1 16 1415 88.43 100 110
shapes0 43 3176 73.86 40 60
swim 48 5598 116.62 5752 6500

3D
Instance TNO TNS ANS EL
mol1 2 2575 1287.5 54
mol2 3 1948 649.3 46
mol3 3 2679 893.0 51

TNO: The total number of objects
TNS: The total number of spheres

ANS: The average number of spheres
EL: The edge length

Table 2. Results

Instance Avg. EL #runs Time limit Avg. Frigid Best Frigid Avg. NL Best NL
dighe1 105 10 600 2.72e+01 2.29e+00 4.97e–02 1.44e–02

shapes0 50 10 600 8.60e–01 4.48e–02 1.86e–02 4.23e–05
swim 6126 10 600 2.92e+02 0.00e+00 2.79e–03 0.00e+00
mol1 54 10 600 3.66e+00 1.14e+00 3.54e–02 1.97e–02
mol2 46 10 600 1.08e+01 1.50e+00 7.16e–02 2.67e–02
mol3 51 10 600 9.64e+00 3.66e+00 6.09e–02 3.75e–02

We use instances for R
2 and R

3. For R
2 we consider the irregular strip packing

problem with free rotations. We use instances available at the EURO Special
Interest Group on Cutting and Packing (ESICUP) website1 after converting each
polygon in the instances into a set of circles that approximates the polygon. For
R

3, we consider the problem that asks to place some protein molecules into a
cubic container. We use molecule data of a protein–protein docking benchmark
set2 [9]. To generate instances, we place spheres with van der Waals radii. We
generate three instances: mol1 consists of 1GRN l u and 1F34 l b, mol2 consists
of 1AY7 l b, 1EWY l b and 1FC2 r u, and mol3 consists of 1MLC l u, 1KAC l b
and 1AY7 l b. Table 1 shows the information of the instances.

We conducted 10 runs under the time limit of 600 seconds per run. Since
the size of containers varies, we normalize the values of Frigid by

√
Frigid/(the

average edge length of the container). Table 2 shows the results. The column
“Avg. EL” denotes the average edge length of the container, the column “Avg.
NL” denotes the average normalized value of Frigid over the 10 runs, and the
column “Best NL” denotes the best normalized value of Frigid over the 10 runs.
1 http://www.fe.up.pt/esicup/
2 http://zlab.bu.edu/julianm/benchmark/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.fe.up.pt/esicup/
http://zlab.bu.edu/julianm/benchmark/

A Multi-sphere Scheme for 2D and 3D Packing Problems 211

5 Conclusions

We proposed a multi-sphere scheme for a packing problem in 2D and 3D. It
approximates objects by sphere sets and find a feasible layout of the objects by
the iterated local search algorithm ILS Rigid. Our computational experiments
indicate that ILS Rigid can compute a nearby feasible layout efficiently.

It is left as future work to accelerate ILS Rigid by adopting other sophisti-
cated data structures such as those for the collision detection and to develop an
algorithm for the packing problem with deformable objects.

References

1. Agarwal, P.K., Guibas, L.J., Har-Peled, S., Rabinovitch, A., Sharir, M.: Penetration
depth of two convex polytopes in 3D. Nordic Journal of Computing 7(3), 227–240
(2000)

2. Wang, H., Huang, W., Zhang, Q., Xu, D.: An improved algorithm for the packing of
unequal circles within a larger containing circle. European Journal of Operational
Research 141(2), 440–453 (2002)

3. Birgin, E.G., Mart́ınez, J.M., Ronconi, D.P.: Optimizing the packing of cylinders into
a rectangular container: A nonlinear approach. European Journal of Operational
Research 160(1), 19–33 (2005)

4. Sloane, N.J.A.: The sphere packing problem. Documenta Mathematica ICM III,
387–396 (1998)

5. Imamichi, T., Yagiura, M., Nagamochi, H.: An iterated local search algorithm based
on nonlinear programming for the irregular strip packing problem. Technical report
2007-009, Department of Applied Mathematics and Physics, Graduate School of
Informatics, Kyoto University (2007)

6. Milenkovic, V.J.: Rotational polygon overlap minimization and compaction. Com-
putational Geometry 10(4), 305–318 (1998)

7. Ferrez, J.A.: Dynamic triangulations for efficient 3D simulation of granular materi-
als. PhD thesis, École Polytechnique Fédérale de Lausanne (2001)

8. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale opti-
mization. Mathematical Programming 45(3), 503–528 (1989)

9. Mintseris, J., Wiehe, K., Pierce, B., Anderson, R., Chen, R., Janin, J., Weng, Z.:
Protein-protein docking benchmark 2.0: an update. Proteins 60(2), 214–216 (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Formulation Space Search for Circle Packing
Problems

Nenad Mladenović1, Frank Plastria2, and Dragan Urošević3

1 School of Mathematics, Brunel University, West London, UK
2 Vrije Universiteit Brussel, Brussel, Belgium

3 Mathematical Instiute SANU, Belgrade, Serbia
Nenad.Mladenovic@brunel.ac.uk, Frank.Plastria@vub.ac.be,

draganu@mi.sanu.ac.yu

Abstract. Circle packing problems were recently solved via reformula-
tion descent (RD) by switching between a cartesian and a polar formula-
tion. Mixed formulations, with circle parameters individually formulated
in either coordinate system, lead to local search methods in a formulation
space. Computational results with up to 100 circles are included.

1 Introduction

Traditional ways to tackle an optimization problem consider a given formulation
min{f(x)|x ∈ S} and search in some way through its feasible set S. The consid-
eration that a same problem may often be formulated in different ways allows
to extend search paradigms to include jumps from one formulation to another.
Each formulation should lend itself to some traditional search method, its ‘local
search’ that works totally within this formulation, and yields a final solution
when started from some initial solution. Any solution found in one formulation
should easily be translatable to its equivalent formulation in any other formu-
lation. We may then move from one formulation to another using the solution
resulting from the former’s local search as initial solution for the latter’s local
search. Such a strategy will of course only be useful in case local searches in
different formulations behave differently.

This idea was recently investigated in [6] using an approach that systemati-
cally changes formulations for solving circle packing problems (CPP). There it is
shown that a stationary point of a non-linear programming formulation of CPP
in Cartesian coordinates is not necessarily stationary so in a polar coordinate
system. The method Reformulation descent (RD) that alternates between these
two formulations until the final solution is stationary with respect to both is
suggested. Results obtained were comparable with the best known values, but
they were achieved some 150 times faster than by an alternative single formula-
tion approach. In that same paper we also introduced the idea suggested above
of Formulation space search (FSS), using more than two formulations. Some re-
search in that direction has been reported in [4,8,7,1]. In this paper the FSS idea
is tested on the CPP problem.

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2007, LNCS 4638, pp. 212–216, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Formulation Space Search for Circle Packing Problems 213

2 Packing Equal Circles in the Unit Circle

The problem of packing equal circles in the unit circle (PCC for short), intro-
duced by Kravitz in [2], asks to position a given number of circular disks of equal
radius without any overlap within a unit circle, and to maximize this radius. Ex-
tensive bibliography, papers and test instances may be found for example on the
web at http://hydra.nat.uni-magdeburg.de/packing/cci/cci.html.

2.1 Mixed Coordinate Formulation

Let the set of disks to be packed be denoted by I = {1, . . . , n}. A mixed formu-
lation φ of the CPP problem is defined by splitting I into two (possibly empty)
parts Cφ and Pφ (Pφ = I \ Cφ) and to give each disk’s center by its cartesian
coordinates when in Cφ and polar coordinates when in Pφ. Here the unit disk
is centered at the origin of both coordinate systems. Formulation φ is then the
following nonlinear program with 2n + 1 real variables:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max r
(xi − xj)2 + (yi − yj)2 − 4r2 ≥ 0 ∀ i, j ∈ Cφ(i ≤ j)
x2

i + y2
i ≤ (1 − r)2 ∀ i ∈ Cφ

ρ2
i + ρ2

j − 4ρiρj cos(αi − αj) − 4r2 ≥ 0 ∀ i, j ∈ Pφ(i ≤ j)
ρi + r ≤ 1 ∀ i ∈ Pφ

(xi − ρj cos(αj))2 + (yi − ρj sin(αj))2 − 4r2 ≥ 0 ∀ i ∈ Cφ, ∀ j ∈ Pφ

r ≥ 0
xi, yi ∈ R ∀i ∈ Cφ

ρi ≥ 0, αi ∈ [0, 2π] ∀ i ∈ Pφ

(1)

The first two constraints express that no two disks in Cφ may overlap, and that
all these disks should fully lie within the unit circle. The next two constraints do
the same in polar coordinates for disks in Pφ. The fifth set of constraints state
that no disk in Cφ may overlap with a disk in Pφ. Observe that the only linear
constraints are those in the fourth set. This shows that no two formulations are
linearly related.

2.2 Reduced Reformulation Descent

The choice Cφ = I defines the fully cartesian formulation φC , whereas Cφ = ∅
defines the fully polar formulation φP . Reformulation descent, as introduced in
[6] uses only these two formulations of CPP. The local search for each formu-
lation was a simple local minimization method of gradient type, in particular
we used Minos [3], a quite popular method of this type. Because these formula-
tions did not allow us to tackle problems for large n, the number of constraints
being O(n2), we made some new experiments with reduced formulations. We sup-
pressed many of the non-overlap constraints by considering only such constraints
for pairs of disks not too far apart at the initial solution, more precisely when
their centers are at a distance ≤ 4r. We found experimentally that the solution

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

214 N. Mladenović, F. Plastria, and D. Urošević

quality remains the same, but since the number of constraints is considerably
reduced, Minos is faster.

Function RFSS-PCC(n, kmin, kstep, kmax);
rcurr ← RD-PCC(n);1

rmax ← rcurr; kcurr ← kmin;2

let I be the set of all centers;3

while Stopping Condition is not satisfied do4

select subset P of kcurr centers at random; C = I \ P ;5

rnext ← MinosMixed(n, x, y, ρ, α, C, P);6

repeat7

rcurr ← rnext; P = C; C = I \ P ;8

rnext ← MinosMixed(n, x, y, ρ, α, C, P);9
until rnext ≤ rcurr ;
if rcurr > rmax then10

rmax ← rcurr; kcurr ← kmin;11

else
kcurr ← kcurr + kstep;12

if kcurr > kmax then13

kcurr ← kmin;14

end
end

end

Algorithm 1. Reduced FSS for PCC problem

2.3 Reduced Formulation Space Search

Consider the set F of all mixed formulations. This corresponds to all choices of
the index set Cφ, so has cardinality 2n. F has a nested structure in n + 1 levels,
where each level is given by the cardinality of Cφ. For each formulation we use
(reduced) RD as local search. The idea of FSS is that after each local search
with end solution x, a new local search is started from the initial solution x, but
using a new (reduced) formulation, randomly chosen from either level 1 if a new
best result was found, or in the opposite case one (or kstep) level(s) up from
the current level, until a maximum level kmax is reached. This is more precisely
described in the boxed pseudo-code Algorithm 1.

Illustrative example. We consider the case with n = 50. Our FSS starts with the
RD solution illustrated in Figure 1, i.e., with rcurr = 0.121858. The values of
kmin and kstep are set to 3 and the value of kmax is set to n = 50. We did not
get improvement with kcurr = 3, 6 and 9. The next improvement was obtained
for kcurr = 12. This means that a mixed formulation (??) with 12 polar and 38
Cartesian coordinates is used (|Cφ| = 38, |Pφ| = 12). Then we turn again to the
formulation with 3 randomly chosen circle centers, which was unsuccessful, but
obtained a better solution with 6, etc. After 11 improvements we ended up with
a solution with radius rmax = 0.125798.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Formulation Space Search for Circle Packing Problems 215

r = 0.121858

RD result

r = 0.122858

kcurr = 12

r = 0.123380

kcurr = 6

r = 0.123995

kcurr = 9

r = 0.124678

kcurr = 15

r = 0.125543

kcurr = 3

r = 0.125755

kcurr = 21

r = 0.125792

kcurr = 3

r = 0.125794

kcurr = 21

r = 0.125796

kcurr = 12

r = 0.125798

kcurr = 18

Fig. 1. Reduced FSS for PCC problem and n = 50

2.4 Computational Results

The FSS method was coded in Fortran and tested on a Pentium 3, 900 MHz-
computer. Results in solving PCC problems by our Variable neighborhood FSS
heuristic (Algorithm 6) are compared with the RD results recently published in
[6]. They are presented in Table 1. In the first column the number of desired circles
n is given, then the best known values from the literature for 1/r. Columns 3 and
4 give the % deviations from these best known values for the best found and the
average RD values, respectively, obtained in 40 runs of the code. Column 5 reports
the corresponding average cpu time. The same values for FSS are given in the last
three columns. It appears that the average error of the FSS heuristic is smaller,
i.e., solutions obtained by FSS are more stable than those obtained with RD.

3 Future Research

A real variable neighborhood strategy [5] might be used in formulation space, by
not working in levels around the fixed center φC , but rather allow re-centering
around the previous formulation. Neighborhoods within formulation space are
defined by way of the distance measure d(φ, φ′) = |Cφ �Cφ′ | = |Pφ �Pφ′ | where
� denotes the symmetric difference operator between two sets.

Future research may also include other sets of formulations of CPP problems
and use them within an FSS approach. For example, an unconstrained (min-max)
formulations (with Cartesian and polar systems) may be used, then projective

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

216 N. Mladenović, F. Plastria, and D. Urošević

Table 1. Packing in unit circle

RD FSS
n Best known Best Avg. Time Best Avg. Time

50 7.947515 0.06 0.79 3.19 0.00 0.24 80.54
55 8.211102 0.00 2.09 3.37 0.00 0.60 72.81
60 8.646220 0.03 1.40 4.71 0.00 0.95 84.39
65 9.017397 0.00 1.33 16.24 0.00 0.21 108.25
70 9.346660 0.10 0.99 19.56 0.01 0.27 151.64
75 9.678344 0.10 0.77 26.46 0.02 0.20 164.51
80 9.970588 0.10 0.93 39.15 0.04 0.23 229.49
85 10.163112 0.72 1.75 38.79 0.18 0.72 256.17
90 10.546069 0.02 1.27 96.82 0.02 0.56 294.77
95 10.840205 0.18 0.93 147.35 0.07 0.39 308.34

100 11.082528 0.30 1.01 180.32 0.12 0.68 326.67

(nonlinear) transformations among variables, etc. Instead of Minos, some other
NLP solver may be tested. Extensions to more general circle packing problems
with different radii might be considered, too.

References

1. Hertz, A., Plumettaz, M., Zufferey, N.: Variable space search for graph coloring, Les
Cahiers du Gerad G-2006-81, Montreal, Canada

2. Kravitz, S.: Packing cylinders into cylindrical containers. Mathematics magazine 40,
65–70 (1967)

3. Minos, Stanford Business Software Inc. website, http://www.sbsi-sol-optimize.
com/products minos5 5.html

4. Mladenovic, N.: Formulation space search - a new approach to optimization (plenary
talk). In: Vuleta, J. (ed.) Proceedings of XXXII SYMOPIS’05, Vrnjacka Banja,
Serbia, p. 3 (2005)

5. Mladenović, N., Hansen, P.: Variable neighborhood search. Computers and Opera-
tions Research 24, 1097–1100 (1997)

6. Mladenović, N., Plastria, F., Urošević, D: Reformulation descent applied to circle
packing problems. Computers & Operations Research 32, 2419–2434 (2005)

7. Mladenovic, N., Plastria, F., Urošević, D.: Stochastic formulation space search meth-
ods. In: Proceedings of EURO XXI - Iceland, pp. 79, Reykjavik (2006)

8. Plastria, F., Mladenović, N., Urošević, D: Variable neighborhood formulation space
search for circle packing. In: 18th Mini Euro Conference VNS, Tenerife, Spain, No-
vember 2005 (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.sbsi-sol-optimize.com/products_minos5_5.html
http://www.sbsi-sol-optimize.com/products_minos5_5.html

Simple Metaheuristics Using the Simplex
Algorithm for Non-linear Programming

João Pedro Pedroso

INESC - Porto and
DCC - Faculdade de Ciências, Universidade do Porto, Porto, Portugal

jpp@fc.up.pt

Abstract. In this paper we present an extension of the Nelder and Mead
simplex algorithm for non-linear programming, which makes it suitable
for both unconstrained and constrained optimisation.1 We then explore
several extensions of the method for escaping local optima, which make
it a simple, yet powerful tool for optimisation of nonlinear functions with
many local optima.

A strategy which proved to be extremely robust was random start
local search, with a correct, though unusual, setup. Actually, for some of
the benchmarks, this simple metaheuristic remained the most effective
one. The idea is to use a very large simplex at the begin; the initial
movements of this simplex are very large, and therefore act as a kind of
filter, which naturally drives the search into good areas.

We propose two more mechanisms for escaping local optima, which,
still being very simple to implement, provide better results for some
difficult problems.

1 Extensions to the Simplex Method

Nelder and Mead’s algorithm for non-linear programming [2] is a local search
method for finding a minimum of a function, based on the movements of a sim-
plex in a multi-dimensional space. These movements rely on function evaluations,
and do not require information concerning the gradient of the function. Points of
the simplex are ordered according to the value of the objective function to which
possibly a penalty is added, if the problem is constrained and the solution is in-
feasible. However, the algorithm does not require the actual value of the function
evaluation at each point; all that is required is to order the simplex’s points, for
determining through which vertex should reflection, expansion, or contraction
be done. This is a common characteristic to all direct search methods [3].

The problem dealt with in this paper is characterised by a nonlinear function
of a vector x, that we want to optimise. This function is usually multimodal,
and in many cases non-smooth.

We assume that there are box constraints, i.e., for a problem of dimension N
there will be constraints:

li ≤ xi ≤ ui i = 1, . . . , N. (1)
1 An extended version of this paper is available in [1].

T. Stützle, M. Birattari, and H.H. Hoos (Eds.): SLS 2007, LNCS 4638, pp. 217–221, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

218 J.P. Pedroso

If in addition to the box constraints there are P more general constraints in
the form gp(x) ≤ 0, for p = 1, . . . , P , then the total constraint violation for a
solution x can be assessed by

δ(x) =
P∑

p=1

max(gp(x), 0) +
N∑

i=1

[max(xi − ui, 0) + max(li − xi, 0)]. (2)

The comparison of solutions can be based on this value, as well as on the objective
value. For two different solutions x and y, x improves y if and only if δ(x) < δ(y),
or δ(x) = δ(y) and the objective value of x is better than that of y.

Based on this classification scheme, we are able to order the points of the
simplex, even if some points are feasible and others not, and directly apply the
simplex algorithm to constrained problems. Notice that equality constraints are
poorly dealt by this modified method. The simplex will probably converge into
a point which is on the surface defined by the equality, but will likely have much
trouble for moving on that curve, in order to improve the value of the objective,
without increasing infeasibilities. The classification system was used in [4]; a
more elaborate method would be the filter method proposed in [5].

A random solution for a given instance is an N -dimensional vector that can
be drawn as

xi = U (li, ui) i = 1, . . . , N, (3)

where we denote a random number with uniform distribution in the interval
[a, b] as U (a, b). One possibility for using the Nelder and Mead algorithm is to
start from a random point, as determined by Equation 3. Using the solution
classification method described above, the search can start with a very large
simplex, as this method tackles the possibility of getting out of bounds. Hence,
we propose a setting were the initial step is very large: all the points except
the initial random point will be out of bounds. Computational experiments have
shown that this setup improves the overall performance of the simplex search;
for smaller steps, the simplex would soon be trapped in a (generally poor) local
optimum.

2 Escaping Local Optima

As the simplex method uses downhill movements, its solution will in general be a
local optimum. If we wish to overcome this drawback, and be able to potentially
obtain the global optimum of an NLP, we have to provide an escape mechanism.

The strategies that we describe for escaping are based on a restart criterion ε,
and a stopping criterion M . Both of these are user-supplied values. Restart will
occur if the vertices of the simplex have all evaluations which are feasible (or all
infeasible), and the deviation between the objective (resp., the infeasibility) of
the best and worst vertices is below ε. All methods will stop if the number of
evaluations has reached the limit M .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Simple Metaheuristics Using the Simplex Algorithm 219

2.1 Random-Start Iterated Simplex

This method consists of restarting the algorithm from a random solution every
time there is convergence of the simplex according to the criterion ε, until the
maximum number of evaluations M is reached. At each iteration, a random point
is drawn and the simplex is reinitialised from that point (with a large step).
Whenever the best found solution is improved, a new local search is performed
with a smaller stopping criterion ε′, for refining this local optimum.

The algorithm returns the best solution found across all iterations.

2.2 Directional Escape

Another possibility for escaping local optima is the following. When the simplex
has converged according to the criterion ε, start expanding the simplex through
its best vertex (always updating the ranking among the vertices). Expansion
will initially decrease the quality of the point; but after a certain number or
repetitions, we will reach a local pessimum, and the subsequent expansion will
lead to an improvement. We propose to expand until the worst point of the
simplex has been improved. At that point, we expect to be on the other side of
the hill; hence, if we restart the simplex algorithm from that point, we expect to
reach a different local optimum. We also restart if the bound has been crossed,
using the first point outside bounds to initialise the simplex.

After an escape point is determined, the simplex is reinitialised around it
by adding a large step independently to each of its coordinates. We called this
strategy escape.

This strategy has the nice property of requiring no additional parameters.

2.3 Tabu Search

Tabu search for non-linear programming is not a precisely defined concept, as
there is not a commonly used notion of tabu in this context. Actually, if the tabu
concept is related to the kind of movement that is done, the escape mechanism
described in the previous section can be considered as a tabu search: after a local
optimum is reached, only expansion of the simplex is considered non-tabu.

In this section we propose a different concept: that of tabu based on the region
of space being searched (as proposed also, for example, in [6]).

As we will shortly see, for tabu search to work in our setting it will have to be
significantly modified, compared to the more usual tabu search in combinatorial
optimisation.

Tabu solutions: classification. A trivial extension of the method devised
for solution classification described in Section 1 consists of associating a tabu
value to each solution, and then using this value as the primary key for solution
sorting. In this context, for two different solutions x and y, x is said to improve
y if and only if:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

220 J.P. Pedroso

– x has a smaller tabu value than y;
– both have similar tabu values, and x has a smaller sum of constraint viola-

tions than y (i.e., δ(x) < δ(y));
– both are feasible and not tabu, and the objective value of x is better than

that of y.

Tabu regions. The most straightforward way of implementing a tabu search
for continuous, non-linear problems is that of making the region around a local
optimum (obtained by the Nelder and Mead algorithm) a tabu region. This way,
for the tenure of the tabu status, we are sure that the search will not fall into
the same local optimum.

This strategy, however, did not lead to good results, for the benchmarks used
in this paper. We have tested many different approaches on this method, all
of them with no success. The main reasons for this are related to the size of
the tabu region: if it is too narrow, the search tends to find local optima on the
border between tabu and non-tabu regions; on the other hand, if the region is too
large, good local optima around the current solution are missed. This difficulty
in parameterisation, and the observation that search around local optima is
frequently essential to find better solutions, lead us to give up true tabu search,
and try the opposite strategy: non-tabu search.

2.4 Inverting Tabu Regions: Non-tabu Search

As all the strategies that assigned a tabu status to the region of the last found
local optima failed, we deduced that this tabu status barred the search from
good regions, resulting in poor performance.

It is therefore expectable that for a good performance, the search has to be
driven into the areas of previous local optima, instead of avoiding them. The
rationale is that good local optima are often close to other local optima; hence,
it might make sense to reinforce the search around previous optima, instead of
avoiding regions close to them. Of course, the limit of this reasoning occurs when
search cannot escape some particular local optimum.

In the algorithm that we devised for this, which could be named non-tabu
search, the region around a local optimum is exploited by drawing a random
solution on its vicinity, and restarting local search from it. A parameter σ controls
the distance from the current base solution, used to draw new starting solutions.
Another parameter, R, controls the number of attempts to do around each base
solution. After R attempts are made, the base solution moves into the best
solution found in theses tentatives.

These two parameters give a way for controlling the search, and to adapt
it to the problem being tackled. Good parameters for a particular problem are
generally easy to devise; but we could find no parameters that are simultaneously
good for all the benchmarks.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Simple Metaheuristics Using the Simplex Algorithm 221

3 Conclusions

In this paper we presented an extension of the simplex method for non-linear pro-
gramming which allows its straightforward application to constrained problems.

For avoiding stagnation in local optima, we analysed the behaviour of several
escaping mechanisms. The simplest of them is random-start local search. Another
one was based on expanding the simplex from the local minimum, going uphill,
until the expansion goes downhill again. At that point, we expect to be on the
other side of the hill, and restarting simplex descent will likely lead to a different
local optimum. The other possibility presented is based on the exploitation of
the area of a the previous local optimum, by drawing starting points for local
search in its vicinity: we called it non-tabu search.

Computational experiments (available in [1]) have shown that all the escaping
mechanisms were effective for avoiding stagnation in local optima.

Due to the simplicity of its implementation, random start iterated local search
is a highly attractive method. However, for some problems it is not able to find
truly good solutions (though the average solution is generally of high quality).

The simplex expansion escaping mechanism is for most of the test cases
slightly superior to random start local search, but in general the non-tabu search
provides the best results.

Test and improvement of the escape methods for problems with equality con-
straints, and other possibilities of dealing with these constraints, remain as topics
for future research. More research topics are their incorporation in more elabo-
rate strategies, like strategic oscillation or population based methods.

References

1. Pedroso, J.P.: Simple meta-heuristics using the simplex algorithm for non-linear
programming. Technical Report DCC-2007-06, DCC, FC, Universidade do Porto
(2007)

2. Nelder, J.A., Mead, R.: A simplex method for function minimization. Computer
Journal 7, 308–313 (1965)

3. Lewis, R.M., Torczon, V., Trosset, M.W.: Direct search methods: then and now.
Journal of Computational and Applied Mathematics 124(1-2), 191–207 (2000)

4. Pedroso, J.P.: Meta-heuristics using the simplex algorithm for nonlinear program-
ming. In: Proceedings of the 2001 International Symposium on Nonlinear Theory
and its Applications, Miyagi, Japan, pp. 315–318 (2001)

5. Audet, C., Dennis Jr., J.: A pattern search filter method for nonlinear programming
without derivatives. SIAM Journal on Optimization 14(4), 980–1010 (2004)

6. Chelouah, R., Siarry, P.: A hybrid method combining continuous tabu search and
nelder-mead simplex algorithms for the global optimization of multiminima func-
tions. European Journal of Operational Research 161, 636–654 (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Author Index

Bang-Jensen, Jørgen 91
Battiti, Roberto 106
Birattari, Mauro 31
Blesa, Maria J. 150
Blum, Christian 150

Chiarandini, Marco 91

Di Gaspero, Luca 76, 177
Doerner, Karl F. 187

Ezaki, Youichi 192

Glover, Fred 121
Goegebeur, Yuri 91

Halim, Steven 16
Hamann, Bernd 182
Hao, Jin-Kao 197
Hartl, Richard F. 187
Hashimoto, Hideki 192
Haugland, Dag 162
Hotz, Ingrid 182

Ibaraki, Toshihide 121, 192
Imamichi, Takashi 207

Jørgensen, Bent 91

Kawashima, Hironao 136
Kojima, Kenya 121
Kokubugata, Hisafumi 136
Komiya, Akira 121
Kudenko, Daniel 46

Laurent, Benôıt 197
Løkketangen, Arne 1, 192

Mascia, Franco 106
Mladenović, Nenad 212
Moriyama, Ayako 136

Nagamochi, Hiroshi 121, 207
Neumann, Frank 61
Nonobe, Koji 121, 192

Pasia, Joseph M. 187
Pedroso, João Pedro 217
Pellegrini, Paola 31
Plastria, Frank 212

Reimann, Marc 187
Ridge, Enda 46
Roli, Andrea 76
Ruiz, Rubén 202

Schaerf, Andrea 76, 177
Sreevalsan-Nair, Jaya 182
Sudholt, Dirk 61

Urlings, Thijs 202
Urošević, Dragan 212

Verhoeven, Meike 182

Witt, Carsten 61
Woodruff, David L. 182

Yagiura, Mutsunori 121, 192
Yap, Roland H.C. 16

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

	Title Page
	Preface
	Organization
	Table of Contents
	The Importance of Being Careful
	Introduction
	The Tabu Tenure
	Varying Length TT
	Interaction of TT with Move Evaluation
	Localized Tabu Tenure

	Aspiration Criteria -- Why Not Ignore It?
	Searching in Infeasible Space
	When Feasibility Is Difficult to Obtain

	What Is the Best Move?
	Learning and Forgetting
	Other Tradeoff Issues
	Conclusions
	References

	Designing and Tuning SLS Through Animation and Graphics: An Extended Walk-Through
	Introduction
	The Visualization Tool: Viz
	A Step by Step Walk-Through with Ro-TS for QAP
	Experiment Set-Up: QAP Instances and Baseline Algorithm
	Fitness Landscapes of QAP and Ro-TS-I Behavior
	Hypotheses to Improve Walks on the QAP Fitness Landscapes
	Tweaking Ro-TS-I to Ro-TS-A for QAP (Type A) Instances
	Tweaking Ro-TS-I to Ro-TS-B for QAP (Type B) Instances
	Benchmarking on the Test Instances
	The Learning Process

	Conclusion
	References

	Implementation Effort and Performance
	Introduction
	Literature Overview
	Main Elements of the Analysis
	The Problem
	Metaheuristics
	The Tuning Process

	Experimental Analysis
	Conclusions
	References

	Tuning the Performance of the MMAS Heuristic
	Introduction and Motivation
	Background
	The MMAS Heuristic for the TSP
	Experiment Designs for Response Surface Models

	Methodology
	Stagnation Stopping Criterion
	Responses
	Problem Instances
	Experiment Design

	Model Fitting
	Model Verification
	Response Optimisation
	Optimisation Verification
	Related Work
	Contributions
	References

	Comparing Variants of MMAS ACO Algorithms on Pseudo-Boolean Functions
	Introduction
	Algorithms
	Plateau Functions
	Unimodal Functions, OneMax and LeadingOnes
	General Results
	OneMax
	LeadingOnes

	Conclusions
	References

	EasyAnalyzer: An Object-Oriented Framework for the Experimental Analysis of Stochastic Local Search Algorithms
	Introduction
	The Architecture of EasyAnalyzer
	The Analysis System
	The Solver Interface
	How to Use EasyAnalyzer

	Implementation of EasyAnalyzer
	SearchSpaceAnalyzer
	MultiSolverAnalyzer

	A Case Study: The k-GraphColoring Problem
	k-GraphColoring Problem Statement and Local Search Encoding
	Search Space Analysis
	Multi-solver Analysis: Tabu Search Configuration Through F-Race

	Conclusions
	References

	Mixed Models for the Analysis of Local Search Components
	Introduction
	Experimental Design and Statistical Analysis
	Case 1: Two Factors Mixed Design
	Case 2: General Mixed Design

	Augmenting a Tree to a 2-Edge-Connected Graph
	Definitions and Problem Formulation
	Local Search Schemes
	Problem Instances
	Experimental Analysis

	Conclusions and Directions for Further Research
	References

	An Algorithm Portfolio for the Sub-graph Isomorphism Problem
	Introduction
	Existing Approaches
	Pruning by Considering Paths Compatibility
	Data Structures and Computational Complexity

	Computational Experiments for VF2 and BM1
	Cumulative Distribution Functions of Randomized Versions
	Algorithm Portfolios
	Computational Experiments for Portfolios
	Conclusions
	References

	A Path Relinking Approach for the Multi-Resource Generalized Quadratic Assignment Problem
	Introduction
	Formulation
	Algorithm
	Local Search, Search Space and Neighborhood
	An Efficient Implementation of Neighborhood Search
	Search in the Chained Shift Neighborhood
	Path Relinking and Reference Set
	The Whole Framework of the Algorithm

	Computational Experiments
	Multi-Resource Generalized Quadratic Assignment Problem
	Generalized Quadratic Assignment Problem
	Multi-Resource Generalized Assignment Problem

	Conclusion
	References

	A Practical Solution Using Simulated Annealing for General Routing Problems with Nodes, Edges, and Arcs
	Introduction
	The Node, Edge and Arc Routing Problem (NEARP)
	Description of the NEARP
	A Precedent Solution for NEARP

	The Proposed Method for Solving NEARP
	Data Modeling
	Transformation Rules
	Objective Function
	Optimization Algorithm

	Experimental Evaluations
	Instances of NEARP
	Generation of a Random Initial Feasible Solution
	Probabilities of Three Transformations and Parameter Setting
	Experimental Results

	Varieties of NEARP
	NEARP with Time Windows (NEARPTW)
	NEARP with Repeated Trips
	Multi Depots NEARP

	Conclusion
	References

	Probabilistic Beam Search for the Longest Common Subsequence Problem
	Introduction
	A Sequential Construction Heuristic
	Probabilistic Beam Search for the LCS Problem
	Deterministic Versus Probabilistic Beam Search

	Experimental Evaluation
	Parameter Setting of Probabilistic Beam Search
	Benchmark Instances
	Results for Set1
	Results for Set2

	Conclusions and Future Work
	References

	A Bidirectional Greedy Heuristic for the Subspace Selection Problem
	Introduction
	Preliminaries
	Basic Concepts from Numerical Linear Algebra

	Extension and Reduction Neighborhoods
	Extending the Solution
	Reducing the Solution

	Bidirectional Greedy Search
	Randomized Search

	Numerical Experiments
	Forward Search
	Comparing Forward and Backward Search

	Conclusion
	References

	EasySyn++: A Tool for Automatic Synthesis of Stochastic Local Search Algorithms
	Introduction
	EasySyn++ Architecture
	Discussion and Conclusions
	References

	Human-Guided Enhancement of a Stochastic Local Search: Visualization and Adjustment of 3D Pheromone
	Introduction
	Problem Formulation and Solution Method
	Visualization and Path Edit Tool
	Experimental Results
	Conclusions
	References

	Solving a Bi-objective Vehicle Routing Problem by Pareto-Ant Colony Optimization
	Introduction
	Pareto Ant Colony Optimization for CVRPRB
	Initialization Phase of PACO
	Local Search Phase of PACO

	Numerical Results
	Evaluation Metrics and Parameter Settings
	Analysis

	Conclusion
	References

	A Set Covering Approach for the Pickup and Delivery Problem with General Constraints on Each Route
	Introduction
	Problem Definition
	Set Covering Approach
	Computational Experiment
	Conclusion
	References

	A Study of Neighborhood Structures for the Multiple Depot Vehicle Scheduling Problem
	Introduction
	Solution Approach
	Decision Variables, Domains and Constraints
	Evaluation Function
	Initial State

	Neighborhood Structures
	Existing Neighborhood Structures
	Block-Moves Neighborhood

	Computational experiments
	Benchmarks and Experimental Settings
	Statistical Study of the Neighborhoods

	Conclusion
	References

	Local Search in Complex Scheduling Problems
	Introduction
	Problem Description
	Local Search Variants
	Accelerations
	Experimental Evaluation
	Comparison of Local Search Techniques
	A Compound Local Search Method

	Conclusions
	References

	A Multi-sphere Scheme for 2D and 3D Packing Problems
	Introduction
	Penalized Rigid Sphere Set Packing Problem
	Computation of the Gradient of the Objective Function

	Algorithm
	Computational Results
	Conclusions
	References

	Formulation Space Search for Circle Packing Problems
	Introduction
	Packing Equal Circles in the Unit Circle
	Mixed Coordinate Formulation
	Reduced Reformulation Descent
	Reduced Formulation Space Search
	Computational Results

	Future Research
	References

	Simple Metaheuristics Using the Simplex Algorithm for Non-linear Programming
	Extensions to the Simplex Method
	Escaping Local Optima
	Random-Start Iterated Simplex
	Directional Escape
	Tabu Search
	Inverting Tabu Regions: Non-tabu Search

	Conclusions
	References

	Author Index

